

Australian Government

Department of Industry, Science, Energy and Resources National Measurement Institute

# Proficiency Test Report AQA 19-14 Pesticides in Water

February 2020

# ACKNOWLEDGMENTS

This study was conducted by the National Measurement Institute (NMI). Support funding was provided by the Australian Government Department of Industry, Science, Energy and Resources.

I would like to thank the management and staff of the participating laboratories for supporting the study. It is only through widespread participation that we can provide an effective service to laboratories.

The assistance of the following NMI staff members in the planning, conduct and reporting of the study is acknowledged.

Jenny Xu Geoff Morschel Hamish Lenton Luke Viskovic

Raluca Iavetz A/g Manager, Chemical Reference Values 105 Delhi Rd, North Ryde NSW 2113 Phone: +61 2 9449 0178 raluca.iavetz@measurement.gov.au



**TA** Accredited for compliance with ISO/IEC 17043

| т۸ | DI |  | - 1 | r | 1          | т | IТ  | .c |
|----|----|--|-----|---|------------|---|-----|----|
| IP | DL |  |     |   | <b>NIN</b> |   | A 1 | 9  |

| SUMMARY                                                      | 1  |
|--------------------------------------------------------------|----|
| 1 INTRODUCTION                                               | 2  |
| 1.1 NMI Proficiency Testing Program                          | 2  |
| 1.2 Study Aims                                               | 2  |
| 1.3 Study Conduct                                            | 2  |
| 2 STUDY INFORMATION                                          | 3  |
| 2.1 Selection of Pesticides and Matrices                     | 3  |
| 2.2 Study Timetable                                          | 4  |
| 2.3 Participation                                            | 4  |
| 2.4 Test Sample Preparation and Homogeneity Testing          | 4  |
| 2.5 Stability of Analytes                                    | 4  |
| 2.6 Laboratory Code                                          | 4  |
| 2.7 Sample Storage, Dispatch and Receipt                     | 4  |
| 2.8 Instructions to Participants                             | 4  |
| 2.9 Interim Report                                           | 5  |
| 3 PARTICIPANT LABORATORY INFORMATION                         | 6  |
| 3.1 Participants' Test Method Summaries                      | 6  |
| 3.2 Basis of Participants' Measurement Uncertainty Estimates | 6  |
| 3.3 Participants' Comments                                   | 7  |
| 4 PRESENTATION OF RESULTS AND STATISTICAL ANALYSIS           | 8  |
| 4.1 Results Summary                                          | 8  |
| 4.2 Assigned Value                                           | 8  |
| 4.3 Performance Coefficient of Variation (PCV)               | 8  |
| 4.4 Target Standard Deviation                                | 8  |
| 4.5 z-Score                                                  | 9  |
| 4.6 E <sub>n</sub> -Score                                    | 9  |
| 4.7 Traceability and Measurement Uncertainty                 | 9  |
| 4.8 Robust Average                                           | 9  |
| 5 TABLES AND FIGURES                                         | 10 |
| 6 DISCUSSION OF RESULTS                                      | 32 |
| 6.1 Assigned Value                                           | 32 |
| 6.2 Measurement Uncertainty Reported by Participants         | 32 |
| 6.3 z-Score                                                  | 33 |
| 6.4 E <sub>n</sub> -Score                                    | 33 |
| 6.5 False negatives                                          | 34 |
| 6.6 Reporting of Pesticides Not Spiked Into the Test Samples | 34 |
| 6.7 Participants' Analytical Methods                         | 35 |
| 6.8 Certified Reference Materials (CRM)                      | 36 |
| 6.9 Comparison with Previous Studies                         | 36 |
| 7 REFERENCES                                                 | 38 |
| APPENDIX 1 – SAMPLE PREPARATION AND HOMOGENEITY TESTING      | 39 |
| APPENDIX 2 – ROBUST AVERAGE AND ASSOCIATED UNCERTAINTY       | 40 |
| APPENDIX 3 – ACRONYMS AND ABBREVIATIONS                      | 41 |
| APPENDIX 4 – PARTICIPANTS' TEST METHODS                      | 43 |

#### SUMMARY

AQA 19-14 commenced in October 2019. Seventeen laboratories registered to participate and all submitted results.

The sample set consisted of three water samples. Samples were prepared in the NMI North Ryde laboratory using surface water from Browns Waterhole in the Turramurra area of Sydney.

Of a possible 170 numeric results a total of 81 (48%) were submitted.

**Traceability**: Assigned values were the consensus of participants' results, so although expressed in SI units, metrological traceability of the assigned values has not been established.

The outcomes of the study were assessed against the aims as follows:

• To assess participant laboratories' identification and measurement of environmentally significant pesticides in water.

Laboratory performance was assessed using both z-scores and E<sub>n</sub>-scores.

Of 65 results for which z-scores were calculated, 47 (72%) returned a satisfactory score of  $|z| \le 2$ .

Of 65 results for which  $E_n$ -scores were calculated, 49 (75%) returned a satisfactory score of  $|E_n| \le 1$ .

Laboratory 15 returned satisfactory z-scores and  $E_n$ -scores for all seven analytes for which scores were calculated.

No results reported by Laboratory 14 returned a satisfactory z-score or E<sub>n</sub>-score.

Five laboratories did not report analytes for which they tested and that were present in the test samples (Table 17, total of 10 results).

Thirteen laboratories reported results for analytes not added to the test samples (Table 18, total of 29 results).

• To evaluate the laboratories' methods for the measurement of trace pesticides in water.

Participants used a wide variety of methods. No correlation between results and method was evident.

• To develop the practical application of traceability and measurement uncertainty and provide participants with information that will be useful in assessing their uncertainty estimates.

Of 81 numeric results reported, 78 (96%) were reported with an expanded measurement uncertainty.

The magnitude of reported uncertainties was within the range of 2.4% to 64%.

# **1 INTRODUCTION**

#### 1.1 NMI Proficiency Testing Program

The National Measurement Institute (NMI) is responsible for Australia's national measurement infrastructure, providing a range of services including a chemical proficiency testing program.

Proficiency testing (PT) is: 'evaluation of participant performance against pre-established criteria by means of interlaboratory comparison.'<sup>1</sup> NMI PT studies target chemical testing in areas of high public significance such as trade, environment, law enforcement and food safety. NMI offers studies in:

- pesticide residues in fruit and vegetables, soil and water;
- petroleum hydrocarbons in soil and water;
- metals, anions, and inorganic analytes in soil, water, food and pharmaceuticals;
- PFAS in biota, soil and water;
- controlled drug assay;
- allergens in food; and
- folic acid in flour.

# 1.2 Study Aims

The aims of the study were to:

- assess participant laboratories' identification and measurement of environmentally significant pesticides in water;
- evaluate the laboratories' methods for the measurement of trace pesticides in water; and
- develop the practical application of traceability and measurement uncertainty and provide participants with information that will be useful in assessing their uncertainty estimates.

The choice of the test method was left to the participating laboratories.

#### 1.3 Study Conduct

The conduct of NMI proficiency tests is described in the NMI Study Protocol for Proficiency Testing.<sup>2</sup> The statistical methods used are described in the NMI Chemical Proficiency Testing Statistical Manual.<sup>3</sup> These documents have been prepared with reference to ISO 17043<sup>1</sup> and The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories.<sup>4</sup> This study falls within the scope of NMI's accreditation as a proficiency testing provider.

#### 2 STUDY INFORMATION

#### 2.1 Selection of Pesticides and Matrices

A list of possible analytes for Samples S1 and S2 are presented in Table 1. Sample S3 was spiked with AMPA and glyphosate. The spiked concentrations are presented in Table 2. The pesticides, and spiked concentrations used in this study were selected with consideration to:

- A variety of pesticides, including some amenable to both gas chromatography and liquid chromatography; and
- National Environmental Protection Council Schedule B1 *Guideline on Investigation* Levels for Soil and Groundwater.<sup>5</sup>

| Aldrin          | Dieldrin           | Lindane            |
|-----------------|--------------------|--------------------|
| Atrazine        | Diuron             | Malathion          |
| Bifenthrin      | alpha-Endosulfan   | Methomyl           |
| Chlordane       | beta-Endosulfan    | Metsulfuron-methyl |
| Chlorfenvinphos | Endosulfan sulfate | Molinate           |
| Chlorpyrifos    | Ethion             | Parathion          |
| Cypermethrin    | Fenitrothion       | Parathion-methyl   |
| Diazinon        | Fenthion           | Permethrin         |
| p,p'-DDD        | Fenvalerate        | Prothiofos         |
| p,p'-DDE        | Heptachlor         | Simazine           |
| p,p'-DDT        | Heptachlor epoxide | Trifluralin        |
| Total DDT       | Hexachlorobenzene  |                    |

#### Table 1 List of Possible Analytes for Samples S1 and S2

 Table 2 Formulated Concentrations of Test Samples

| Sample S1          | Spike (µg/L) | Uncertainty (µg/L)* |  |
|--------------------|--------------|---------------------|--|
| cis-Chlordane      | 24.8         | 1.2                 |  |
| Diuron             | 2.95         | 0.15                |  |
| Endosulfan sulfate | 4.02         | 0.20                |  |
| Molinate           | 8.93         | 0.45                |  |
| Sample S2          |              |                     |  |
| Ethion             | 5.01         | 0.25                |  |
| Methomyl           | 10.6         | 0.5                 |  |
| Metsulfuron-methyl | 3.59         | 0.18                |  |
| Simazine           | 10.0         | 0.5                 |  |
| Sample S3          |              |                     |  |
| AMPA               | 32.0         | 1.6                 |  |
| Glyphosate         | 18.0         | 0.9                 |  |

\*The uncertainty is an expanded uncertainty at approximately 95% confidence using a coverage factor of 2.

# 2.2 Study Timetable

The timetable of the study was:

| Invitation issued     | 18 October 2019  |
|-----------------------|------------------|
| Samples dispatched    | 12 November 2019 |
| Results due           | 09 December 2019 |
| Interim report issued | 06 January 2020  |

# 2.3 Participation

Participation was as follows:

| Invited           | 106 |
|-------------------|-----|
| Participated:     | 17  |
| Submitted results | 17  |

# 2.4 Test Sample Preparation and Homogeneity Testing

The preparation of the study samples is described in Appendix 1.

The samples were spiked, mixed and packaged using a process that has been demonstrated to produce homogeneous samples for previous NMI proficiency tests of pesticides in water. No homogeneity testing was conducted, and results of the study gave no reason to question the homogeneity of the samples.

# 2.5 Stability of Analytes

No assessment of the stability of the pesticides was made before the samples were sent. To assess possible instability, the results returned by participants were compared to the spiked concentration. Assigned values (or robust averages) of participants' results were within 72 to 129% of the spiked concentration, which provides good support for the stability of these analytes in the test samples.

#### 2.6 Laboratory Code

All laboratories that agreed to participate were assigned a confidential laboratory code.

#### 2.7 Sample Storage, Dispatch and Receipt

The test samples were refrigerated at 4°C prior to dispatch.

The following items were packaged with the samples:

- a covering letter which included a description of the test samples and instructions for participants; and
- a form for participants to confirm the receipt and condition of the test samples.

An Excel spreadsheet for the electronic reporting of results was e-mailed to participants.

#### 2.8 Instructions to Participants

Participants were instructed as follows:

- Quantitatively analyse the samples using **your normal test method**.
- Participants need not test for all listed analytes.
- For each analyte in each sample report a single result expressed as if reporting to a client (i.e. corrected for recovery or not, according to your standard procedure). This figure will be used in all statistical analysis in the study report.

- Report results in units of **µg/L**.
- For each analyte in each sample report the associated expanded uncertainty (e.g.  $0.50 \pm 0.02 \ \mu g/L$ ).
- Report any listed pesticide not tested as NT.
- No limit of reporting has been set for this study. Report results as you would to a client, applying the limit of reporting of the method used for analysis.
- Report the basis of your uncertainty estimates (e.g. uncertainty budget, repeatability precision, long term result variability).
- If determined, report your percentage recovery. This will be presented in the report for information only.
- Please **complete the method details** as required by the Methodology sheet.
- Return the completed results sheet by e-mail (proficiency@measurement.gov.au).
- Please return the completed results sheet by 9 December 2019. Late results may not be included in the study report.

#### 2.9 Interim Report

An interim report tabling results and reported uncertainties was emailed to all participants on 6 January 2020.

#### **3 PARTICIPANT LABORATORY INFORMATION**

#### 3.1 Participants' Test Method Summaries

Participants were requested to provide information about their test methods. This is transcribed in Appendix 4.

#### 3.2 Basis of Participants' Measurement Uncertainty Estimates

Participants were requested to provide information about the basis of their uncertainty estimates (Table 3).

| Lab. Approach to Estimating MU |                                                                            | Information Sou                                | rces for MU Estimation*                                                   | Guide Document            |
|--------------------------------|----------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|---------------------------|
| Code                           | Approach to Estimating MO                                                  | Precision                                      | Method Bias                                                               | for Estimating MU         |
| 1                              | Bottom Up (ISO/GUM, fish bone/cause and effect diagram)                    | Control Samples – SS                           | Recoveries of SS<br>Standard Purity                                       | ISO/GUM                   |
| 2                              | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples – RM<br>Duplicate Analysis     | CRM<br>Instrument Calibration                                             | Nata Technical<br>Note 33 |
| 3                              | Standard deviation of replicate analyses multiplied by 2 or 3              | Control Samples – SS                           | Recoveries of SS                                                          | Nata Technical<br>Note 33 |
| 4                              | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Duplicate Analysis<br>Instrument Calibration   | CRM<br>Standard Purity                                                    | Nata Technical<br>Note 33 |
| 5                              | Control Charts                                                             | Control Samples – SS                           | Recoveries of SS                                                          | Nata Technical<br>Note 33 |
| 6                              | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples – SS<br>Duplicate Analysis     | Recoveries of SS                                                          | Eurachem/CITAC<br>Guide   |
| 7                              | Standard deviation of replicate analyses multiplied by 2 or 3              | Duplicate Analysis<br>Instrument Calibration   | Instrument Calibration<br>Standard Purity                                 | Eurachem/CITAC<br>Guide   |
| 8                              | Bottom Up (ISO/GUM, fish bone/cause and effect diagram)                    |                                                |                                                                           | ISO/GUM                   |
| 9                              | Bottom Up (ISO/GUM, fish bone/cause and effect diagram)                    | Control Samples – SS                           | Recoveries of Spiked Samples<br>Instrument Calibration<br>Standard Purity | ISO/GUM                   |
| 10                             | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples – SS<br>Instrument Calibration | CRM<br>Recoveries of SS<br>Instrument Calibration<br>Standard Purity      | Eurachem/CITAC<br>Guide   |
| 11                             | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Duplicate Analysis<br>Instrument Calibration   | Recoveries of SS                                                          | Nata Technical<br>Note 33 |
| 12                             | Standard deviation of replicate analyses multiplied by 2 or 3              | Duplicate Analysis<br>Instrument Calibration   | CRM<br>Instrument Calibration                                             |                           |
| 13                             | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Duplicate Analysis<br>Instrument Calibration   | CRM<br>Recoveries of SS                                                   | Eurachem/CITAC<br>Guide   |

Table 3 Basis of Uncertainty Estimate

| Lab. | Approach to Estimating MU                                                  | Information Sou                                                      | Guide Document                                                                                          |                           |  |
|------|----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|--|
| Code | Approach to Estimating WO                                                  | Precision                                                            | Method Bias                                                                                             | for Estimating MU         |  |
| 14   | Standard deviation of replicate analyses multiplied by 2 or 3              | Control Samples – SS<br>Duplicate Analysis<br>Instrument Calibration | Recoveries of SS<br>Instrument Calibration                                                              | Nata Technical<br>Note 33 |  |
| 15   | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Instrument Calibration                                               | CRM<br>Recoveries of SS                                                                                 | Nata Technical<br>Note 33 |  |
| 16   | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples<br>Duplicate Analysis                                | CRM<br>Laboratory Bias from PT Studies<br>Recoveries of SS<br>Instrument Calibration<br>Standard Purity | Nata Technical<br>Note 33 |  |
| 17   | Top Down - precision and<br>estimates of the method and<br>laboratory bias | Control Samples – SS<br>Duplicate Analysis<br>Instrument Calibration | Instrument Calibration                                                                                  | Nata Technical<br>Note 33 |  |

\*SS = Spiked Samples, RM = Reference Material, CRM = Certified Reference Material

#### 3.3 Participants' Comments

The study co-ordinator welcomes comments or suggestions from participants about this study or possible future studies. Such feedback may be useful in improving future studies. Participants' comments are reproduced in Table 4.

| Table 4 Partici | pants' | Comments |
|-----------------|--------|----------|
|-----------------|--------|----------|

| Lab.<br>Code | Sample     | Participant's Comments or Discussion*                                                                                                                 |
|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | <b>S</b> 1 | Not set up for OP and triazines                                                                                                                       |
| 3            | S2         | No reportable OC for this laboratory, assuming this sample is reserved for analytes we don't have the ability to analyse (OP)                         |
|              | All        | Many analytes including the OP suite and a few OC are not set up to analyse in this laboratory yet. Resulting in the analytes we can report to be few |
| 4            | S1         | Molinate was detected.                                                                                                                                |

\*Some entries have been modified so that the participant cannot be identified.

# 4 PRESENTATION OF RESULTS AND STATISTICAL ANALYSIS

#### 4.1 Results Summary

Participant results are listed in Tables 5 to 14 with resultant summary statistics: robust average, median, maximum, minimum, robust standard deviation  $(SD_{rob})$  and robust coefficient of variation  $(CV_{rob})$ .

Bar charts of results and performance scores are presented in Figures 2 to 11.

An example chart with interpretation guide is shown in Figure 1.



Figure 1 Guide to Presentation of Results

# 4.2 Assigned Value

The assigned value is defined as the: 'value attributed to a particular property of a proficiency test item'.<sup>1</sup> In this study, the property is the concentration of the analyte. Assigned values were the robust average of participants' results; the expanded uncertainties were estimated from the associated robust standard deviations.

# 4.3 Performance Coefficient of Variation (PCV)

The performance coefficient of variation (PCV) is a measure of the between laboratory variation that in the judgement of the study organiser would be expected from participants given the sample concentration. It is important to note that this is a performance measure set by the study coordinator; it is not the coefficient of variation of participant results.

#### 4.4 Target Standard Deviation

The target standard deviation ( $\sigma$ ) is the product of the assigned value (X) and the performance coefficient of variation (*PCV*), as presented in Equation 1. This value is used in the calculation of z-scores.

$$\sigma = X \times PCV$$
 Equation 1

# 4.5 z-Score

For each participant result a z-score is calculated according to Equation 2 below:

$$z = \frac{(\chi - X)}{\sigma} \qquad Equation 2$$

where:

z is z-score

 $\chi$  is a participant's result

- X is the assigned value
- $\sigma$  is the target standard deviation from Equation 1

A z-score with absolute value (|z|):

- $|z| \le 2$  is satisfactory;
- 2 < |z| < 3 is questionable;
- $|z| \ge 3$  is unsatisfactory.

# 4.6 E<sub>n</sub>-Score

The  $E_n$ -score is complementary to the z-score in assessment of laboratory performance.  $E_n$ -score includes measurement uncertainty and is calculated according to Equation 3 below:

$$E_n = \frac{(\chi - X)}{\sqrt{U_{\chi}^2 + U_X^2}} \qquad Equation 3$$

where:

 $E_n$  is E<sub>n</sub>-score

 $\chi$  is a participant's result

X is the assigned value

 $U_{\chi}$  is the expanded uncertainty of the participant's result

 $U_X$  is the expanded uncertainty of the assigned value

An  $E_n$ -score with absolute value ( $|E_n|$ ):

- $|E_n| \le 1$  is satisfactory;
- $|E_n| > 1$  is unsatisfactory.

# 4.7 Traceability and Measurement Uncertainty

Laboratories accredited to ISO/IEC Standard 17025:2017 must establish and demonstrate the traceability and measurement uncertainty associated with their test results.<sup>6</sup>

Guidelines for quantifying uncertainty in analytical measurement are described in the Eurachem/CITAC Guide.<sup>7</sup>

#### 4.8 Robust Average

The robust averages and associated expanded measurement uncertainties were calculated using the procedure described in 'ISO 13528:2015(E), Statistical methods for use in proficiency testing by interlaboratory comparison'.<sup>8</sup>

# 5 TABLES AND FIGURES

Table 5

# Sample Details

| Sample No. | S1            |
|------------|---------------|
| Matrix.    | Water         |
| Analyte.   | cis-Chlordane |
| Units      | μg/L          |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|----------|---------|-----------------------|
| 1        | NT     | NT          | NT       |         |                       |
| 2        | NR     | NR          | NR       |         |                       |
| 3        | 20.32  | 3.39        | NR       | 0.90    | 0.50                  |
| 4        | <0.1   | NR          | NR       |         |                       |
| 5        | 16.3   | 6.2         | NR       | -0.60   | -0.23                 |
| 6        | 13.16  | 3.95        | 65       | -1.77   | -0.91                 |
| 7        | 36.1   | 6.9         | NR       | 6.78    | 2.37                  |
| 8        | 19     | 3.1         | NR       | 0.41    | 0.24                  |
| 9        | 22.4   | 2.5         | NR       | 1.68    | 1.07                  |
| 10       | 12.4   | 3.0         | 75       | -2.05   | -1.21                 |
| 11       | 20     | 5.0         | 94       | 0.78    | 0.35                  |
| 12       | 17.07  | 3.41        | 85       | -0.31   | -0.17                 |
| 13       | NT     | NT          | NT       |         |                       |
| 14       | 12.4   | 0.3         | NR       | -2.05   | -1.61                 |
| 15       | 22.6   | 6.78        | 68       | 1.75    | 0.62                  |
| 16       | 21.787 | 4.357       | 118      | 1.45    | 0.70                  |
| 17       | NT     | NT          | NT       |         |                       |

#### Statistics

| Assigned Value* | 17.9 | 3.4 |
|-----------------|------|-----|
| Spike           | 24.8 | 1.2 |
| Robust Average  | 18.6 | 3.6 |
| Median          | 19.5 | 2.8 |
| Mean            | 19.5 |     |
| Ν               | 12   |     |
| Max.            | 36.1 |     |
| Min.            | 12.4 |     |
| Robust SD       | 4.5  |     |
| Robust CV       | 25%  |     |

\*Robust average excluding laboratory 7.









En-Scores: S1 - cis-Chlordane



# Sample Details

| Sample No. | S1     |
|------------|--------|
| Matrix.    | Water  |
| Analyte.   | Diuron |
| Units      | µg/L   |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery |  |
|----------|--------|-------------|----------|--|
| 1        | NT     | NT          | NT       |  |
| 2        | 5.321  | 0.6651      | NR       |  |
| 3        | NT     | NT          | NT       |  |
| 4        | 4.96   | 1           | NR       |  |
| 5        | NT     | NT          | NT       |  |
| 6        | 2.82   | 0.7         | 83       |  |
| 7        | 2.35   | 0.94        | NR       |  |
| 8        | NT     | NT          | NT       |  |
| 9        | NT     | NT          | NT       |  |
| 10       | <0.1   | NR          | NR       |  |
| 11       | NT     | NT          | NT       |  |
| 12       | NR     | NR          | NR       |  |
| 13       | NT     | NT          | NT       |  |
| 14       | NT     | NT          | NT       |  |
| 15       | 3.4    | 1.02        | 97       |  |
| 16       | 3.83   | 0.9         | 90       |  |
| 17       | NT     | NT          | NT       |  |

#### Statistics

| Assigned Value | Not Set |      |
|----------------|---------|------|
| Spike          | 2.95    | 0.15 |
| Robust Average | 3.8     | 1.4  |
| Median         | 3.6     | 1.6  |
| Mean           | 3.8     |      |
| Ν              | 6       |      |
| Max.           | 5.321   |      |
| Min.           | 2.35    |      |
| Robust SD      | 1.3     |      |
| Robust CV      | 35%     |      |

Results: S1 - Diuron



# Sample Details

| Sample No. | S1                 |
|------------|--------------------|
| Matrix.    | Water              |
| Analyte.   | Endosulfan sulfate |
| Units      | μg/L               |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|----------|---------|-----------------------|
| 1        | 3.20   | 0.16        | 110      | -1.18   | -0.83                 |
| 2        | NR     | NR          | NR       |         |                       |
| 3        | 8.31   | 1.17        | NR       | 7.57    | 3.09                  |
| 4        | 5.6    | 1           | NR       | 2.93    | 1.32                  |
| 5        | 5.01   | 1.9         | NR       | 1.92    | 0.54                  |
| 6        | 2.27   | 0.68        | 65       | -2.78   | -1.52                 |
| 7        | 3.2    | 1.4         | NR       | -1.18   | -0.43                 |
| 8        | 4.9    | 1.1         | NR       | 1.73    | 0.74                  |
| 9        | 4.1    | 0.7         | NR       | 0.36    | 0.19                  |
| 10       | 5.3    | 1.4         | 98       | 2.42    | 0.87                  |
| 11       | 4.1    | 1.0         | 91       | 0.36    | 0.16                  |
| 12       | 4.02   | 0.80        | 111      | 0.22    | 0.11                  |
| 13       | NT     | NT          | NT       |         |                       |
| 14       | 2.2    | 0.15        | NR       | -2.90   | -2.03                 |
| 15       | 4.4    | 1.32        | 66       | 0.87    | 0.33                  |
| 16       | 3.122  | 0.624       | 103      | -1.32   | -0.75                 |
| 17       | 2.99   | 1.41        | NR       | -1.54   | -0.55                 |

#### Statistics

| Assigned Value* | 3.89 | 0.82 |
|-----------------|------|------|
| Spike           | 4.02 | 0.20 |
| Robust Average  | 4.03 | 0.87 |
| Median          | 4.10 | 0.75 |
| Mean            | 4.18 |      |
| Ν               | 15   |      |
| Max.            | 8.31 |      |
| Min.            | 2.2  |      |
| Robust SD       | 1.2  |      |
| Robust CV       | 32%  |      |

\*Robust average excluding laboratory 3.









En-Scores: S1 - Endosulfan sulfate



# Sample Details

| Sample No. | S1       |
|------------|----------|
| Matrix.    | Water    |
| Analyte.   | Molinate |
| Units      | µg/L     |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery |  |
|----------|--------|-------------|----------|--|
| 1        | NT     | NT          | NT       |  |
| 2        | NR     | NR          | NR       |  |
| 3        | NT     | NT          | NT       |  |
| 4*       | NR     | NR          | NR       |  |
| 5        | NT     | NT          | NT       |  |
| 6        | 8.64   | 1.6         | 83       |  |
| 7        | 7.8    | 2.4         | NR       |  |
| 8        | NT     | NT          | NT       |  |
| 9        | 6.4    | 4.1         | NR       |  |
| 10       | 10.5   | 2.7         | 102      |  |
| 11       | NT     | NT          | NT       |  |
| 12       | 0.57   | NR          | NR       |  |
| 13       | NT     | NT          | NT       |  |
| 14       | NT     | NT          | NT       |  |
| 15       | 9.6    | 2.88        | 99       |  |
| 16       | NT     | NT          | NT       |  |
| 17       | NT     | NT          | NT       |  |

\*Lab 4 detected molinate but did not report a value.

#### Statistics

| Assigned Value | Not Set |      |
|----------------|---------|------|
| Spike          | 8.93    | 0.45 |
| Robust Average | 7.7     | 3.0  |
| Median         | 8.2     | 2.5  |
| Mean           | 7.3     |      |
| Ν              | 6       |      |
| Max.           | 10.5    |      |
| Min.           | 0.57    |      |
| Robust SD      | 2.9     |      |
| Robust CV      | 38%     |      |

Results: S1 - Molinate



# Sample Details

| Sample No. | S2     | ] |
|------------|--------|---|
| Matrix.    | Water  |   |
| Analyte.   | Ethion |   |
| Units      | μg/L   |   |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|----------|---------|-----------------------|
| 1        | 4.34   | 0.32        | 89       | 0.57    | 0.45                  |
| 2        | NR     | NR          | NR       |         |                       |
| 3        | NT     | NT          | NT       |         |                       |
| 4        | 19.7   | 4           | NR       | 26.17   | 3.87                  |
| 5        | NT     | NT          | NT       |         |                       |
| 6        | 3.2    | 1.5         | 90       | -1.33   | -0.48                 |
| 7        | 3.6    | 0.73        | NR       | -0.67   | -0.40                 |
| 8        | 6.2    | 2.0         | NR       | 3.67    | 1.04                  |
| 9        | 4.6    | 1.0         | NR       | 1.00    | 0.49                  |
| 10       | NT     | NT          | NT       |         |                       |
| 11       | 3.4    | 0.9         | 90       | -1.00   | -0.53                 |
| 12       | NT     | NT          | NT       |         |                       |
| 13       | NT     | NT          | NT       |         |                       |
| 14       | 1.9    | 1.2         | NR       | -3.50   | -1.52                 |
| 15       | 4.2    | 1.26        | 96       | 0.33    | 0.14                  |
| 16       | 3.46   | 0.732       | 85       | -0.90   | -0.54                 |
| 17       | NT     | NT          | NT       |         |                       |

#### Statistics

| Assigned Value* | 4.00 | 0.69 |
|-----------------|------|------|
| Spike           | 5.01 | 0.25 |
| Robust Average  | 4.1  | 1.2  |
| Median          | 3.90 | 0.64 |
| Mean            | 5.46 |      |
| Ν               | 10   |      |
| Max.            | 19.7 |      |
| Min.            | 1.9  |      |
| Robust SD       | 0.78 |      |
| Robust CV       | 20%  |      |

\*Robust average excluding laboratories 4 and 14.









Laboratory

# Sample Details

| Sample No. | S2       |
|------------|----------|
| Matrix.    | Water    |
| Analyte.   | Methomyl |
| Units      | μg/L     |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery |
|----------|--------|-------------|----------|
| 1        | NT     | NT          | NT       |
| 2        | NR     | NR          | NR       |
| 3        | NT     | NT          | NT       |
| 4        | 17.6   | 3.5         | NR       |
| 5        | NT     | NT          | NT       |
| 6        | NT     | NT          | NT       |
| 7        | NT     | NT          | NT       |
| 8        | NT     | NT          | NT       |
| 9        | NT     | NT          | NT       |
| 10       | NT     | NT          | NT       |
| 11       | NT     | NT          | NT       |
| 12       | 0.85   | NR          | NR       |
| 13       | NT     | NT          | NT       |
| 14       | NT     | NT          | NT       |
| 15       | 11     | 3.3         | 101      |
| 16       | 10.975 | 2.70        | 70       |
| 17       | NT     | NT          | NT       |

#### Statistics

| Assigned Value | Not Set |     |
|----------------|---------|-----|
| Spike          | 10.6    | 0.5 |
| Robust Average | 10.1    | 9.8 |
| Median         | 11.0    | 7.8 |
| Mean           | 10.1    |     |
| Ν              | 4       |     |
| Max.           | 17.6    |     |
| Min.           | 0.85    |     |
| Robust SD      | 7.8     |     |
| Robust CV      | 78%     |     |

Results: S2 - Methomyl



# Sample Details

| Sample No. | S2                 |
|------------|--------------------|
| Matrix.    | Water              |
| Analyte.   | Metsulfuron-methyl |
| Units      | µg/L               |

# Participant Results

| Lab Code | Result | Uncertainty | Recovery | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|----------|---------|-----------------------|
| 1        | NT     | NT          | NT       |         |                       |
| 2        | 3.884  | 0.486       | NR       | 0.45    | 0.49                  |
| 3        | NT     | NT          | NT       |         |                       |
| 4        | 13.7   | 2.7         | NR       | 18.42   | 3.72                  |
| 5        | NT     | NT          | NT       |         |                       |
| 6        | 3.58   | 1           | 90       | -0.11   | -0.06                 |
| 7        | NT     | NT          | NT       |         |                       |
| 8        | NT     | NT          | NT       |         |                       |
| 9        | <2.5   | NR          | NR       |         |                       |
| 10       | 3.6    | 1.0         | 100      | -0.07   | -0.04                 |
| 11       | NT     | NT          | NT       |         |                       |
| 12       | NT     | NT          | NT       |         |                       |
| 13       | NT     | NT          | NT       |         |                       |
| 14       | NT     | NT          | NT       |         |                       |
| 15       | 3.6    | 1.08        | 95       | -0.07   | -0.04                 |
| 16       | 3.65   | 0.83        | 80       | 0.02    | 0.01                  |
| 17       | NT     | NT          | NT       |         |                       |

#### Statistics

| Assigned Value* | 3.64  | 0.11 |
|-----------------|-------|------|
| Spike           | 3.59  | 0.18 |
| Robust Average  | 3.73  | 0.24 |
| Median          | 3.63  | 0.05 |
| Mean            | 5.34  |      |
| Ν               | 6     |      |
| Max.            | 13.7  |      |
| Min.            | 3.58  |      |
| Robust SD       | 0.094 |      |
| Robust CV       | 2.6%  |      |

\*Robust average excluding laboratory 4.

#### Results: S2 - Metsulfuron-methyl











# Sample Details

| Sample No. | S2       |
|------------|----------|
| Matrix.    | Water    |
| Analyte.   | Simazine |
| Units      | μg/L     |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|----------|---------|-----------------------|
| 1        | NT     | NT          | NT       |         |                       |
| 2        | 9.993  | 1.249       | NR       | 0.50    | 0.30                  |
| 3        | NT     | NT          | NT       |         |                       |
| 4        | NR     | NR          | NR       |         |                       |
| 5        | NT     | NT          | NT       |         |                       |
| 6        | 10.0   | 0.7         | 90       | 0.50    | 0.35                  |
| 7        | 8.0    | 2.1         | NR       | -0.93   | -0.46                 |
| 8        | NT     | NT          | NT       |         |                       |
| 9        | 7.4    | 2.2         | NR       | -1.36   | -0.65                 |
| 10       | 8.7    | 2.7         | 60       | -0.43   | -0.18                 |
| 11       | NT     | NT          | NT       |         |                       |
| 12       | 1.84   | NR          | NR       | -5.35   | -3.93                 |
| 13       | NT     | NT          | NT       |         |                       |
| 14       | NT     | NT          | NT       |         |                       |
| 15       | 12     | 3.6         | 98       | 1.94    | 0.66                  |
| 16       | 14.224 | 3.556       | 70       | 3.53    | 1.22                  |
| 17       | NT     | NT          | NT       |         |                       |

#### Statistics

| Assigned Value* | 9.3    | 1.9 |
|-----------------|--------|-----|
| Spike           | 10.0   | 0.5 |
| Robust Average  | 9.3    | 3.1 |
| Median          | 9.3    | 2.0 |
| Mean            | 9.0    |     |
| Ν               | 8      |     |
| Max.            | 14.224 |     |
| Min.            | 1.84   |     |
| Robust SD       | 1.9    |     |
| Robust CV       | 20%    |     |

\*Robust average excluding laboratories 12 and 16.

Results: S2 - Simazine









Figure 9

# Sample Details

| Sample No. | S3    |
|------------|-------|
| Matrix.    | Water |
| Analyte.   | AMPA  |
| Units      | μg/L  |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|----------|---------|-----------------------|
| 1        | NT     | NT          | NT       |         |                       |
| 2        | NT     | NT          | NT       |         |                       |
| 3        | 26.94  | 8           | NR       | -0.36   | -0.14                 |
| 4        | 28.2   | 5.5         | 85       | -0.07   | -0.03                 |
| 5        | NT     | NT          | NT       |         |                       |
| 6        | 37.2   | 7           | NR       | 2.04    | 0.83                  |
| 7        | NT     | NT          | NT       |         |                       |
| 8        | <100   | NR          | NR       |         |                       |
| 9        | 27.1   | 2.4         | NR       | -0.33   | -0.17                 |
| 10       | 17.0   | 4.4         | 79       | -2.69   | -1.28                 |
| 11       | NT     | NT          | NT       |         |                       |
| 12       | NT     | NT          | NT       |         |                       |
| 13       | 38     | 11          | 92       | 2.22    | 0.70                  |
| 14       | NT     | NT          | NT       |         |                       |
| 15       | 25     | 7.5         | 96       | -0.82   | -0.32                 |
| 16       | NT     | NT          | NT       |         |                       |
| 17       | NT     | NT          | NT       |         |                       |

#### Statistics

| Assigned Value | 28.5 | 7.8 |
|----------------|------|-----|
| Spike          | 32.0 | 1.6 |
| Robust Average | 28.5 | 7.8 |
| Median         | 27.1 | 2.9 |
| Mean           | 28.5 |     |
| Ν              | 7    |     |
| Max.           | 38   |     |
| Min.           | 17   |     |
| Robust SD      | 8.2  |     |
| Robust CV      | 29%  |     |











# Sample Details

| Sample No. | S3         |
|------------|------------|
| Matrix.    | Water      |
| Analyte.   | Glyphosate |
| Units      | µg/L       |

# **Participant Results**

| Lab Code | Result | Uncertainty | Recovery | z-Score | E <sub>n</sub> -Score |
|----------|--------|-------------|----------|---------|-----------------------|
| 1        | NT     | NT          | NT       |         |                       |
| 2        | NT     | NT          | NT       |         |                       |
| 3        | 19.03  | 6           | NR       | 0.15    | 0.07                  |
| 4        | 16.9   | 3.3         | 120      | -0.61   | -0.42                 |
| 5        | NT     | NT          | NT       |         |                       |
| 6        | 17.3   | 3.5         | NR       | -0.47   | -0.31                 |
| 7        | NT     | NT          | NT       |         |                       |
| 8        | <100   | NR          | NR       |         |                       |
| 9        | 24.2   | 2.0         | NR       | 2.01    | 1.79                  |
| 10       | 15.6   | 3.9         | 79       | -1.08   | -0.66                 |
| 11       | NT     | NT          | NT       |         |                       |
| 12       | NT     | NT          | NT       |         |                       |
| 13       | 20     | 6.0         | 95       | 0.50    | 0.22                  |
| 14       | NT     | NT          | NT       |         |                       |
| 15       | 19     | 5.7         | 104      | 0.14    | 0.06                  |
| 16       | NT     | NT          | NT       |         |                       |
| 17       | NT     | NT          | NT       |         |                       |

#### Statistics

| Assigned Value | 18.6 | 2.4 |
|----------------|------|-----|
| Spike          | 18.0 | 0.9 |
| Robust Average | 18.6 | 2.4 |
| Median         | 19.0 | 2.3 |
| Mean           | 18.9 |     |
| Ν              | 7    |     |
| Max.           | 24.2 |     |
| Min.           | 15.6 |     |
| Robust SD      | 2.6  |     |
| Robust CV      | 14%  |     |









En-Scores: S3 - Glyphosate











Scores greater than 10 have been plotted as 10.

Figure 13 z-Score Dispersal by Pesticide



# 6 DISCUSSION OF RESULTS

#### 6.1 Assigned Value

Assigned values were the robust average of participants' results. The robust averages and associated expanded uncertainties were calculated using the procedure described in 'ISO 13528:2015(E), Statistical methods for use in proficiency testing by interlaboratory comparison'.<sup>8</sup> Appendix 2 sets out the calculation for the expanded uncertainty of the robust average of AMPA in Sample S3.

A comparison of the spiked concentration and the assigned value (or robust average) is presented in Table 15.

No assigned value was set for diuron and molinate in Sample S1, and methomyl in Sample S2, as few laboratories reported numeric results and these were too variable.

For all other pesticides, the assigned values were within the range of 72 to 103% of the spiked concentration. This provides good support for the assigned value and is evidence for the stability of these analytes in the test samples.

**Traceability**: The consensus of participants' results is not traceable to any external reference, so although expressed in SI units, metrological traceability has not been established.

| Analyte            | Spiked Concentration<br>(µg/L) | Assigned Value (Robust<br>Average)<br>(µg/L) | Assigned Value ( <i>Robust</i><br>Average) / Spike Value<br>(%) |
|--------------------|--------------------------------|----------------------------------------------|-----------------------------------------------------------------|
| cis-Chlordane      | 24.8                           | 17.9                                         | 72                                                              |
| Diuron             | 2.95                           | (3.8)                                        | (129)                                                           |
| Endosulfan sulfate | 4.02                           | 3.89                                         | 97                                                              |
| Molinate           | 8.93                           | (7.7)                                        | (86)                                                            |
| Ethion             | 5.01                           | 4.00                                         | 80                                                              |
| Methomyl           | 10.6                           | (10.1)                                       | (95)                                                            |
| Metsulfuron-methyl | 3.59                           | 3.64                                         | 101                                                             |
| Simazine           | 10.0                           | 9.3                                          | 93                                                              |
| AMPA               | 32.0                           | 28.5                                         | 89                                                              |
| Glyphosate         | 18.0                           | 18.6                                         | 103                                                             |

Table 15 Comparison of Assigned Value (or Robust Average) and Spiked Concentration

# 6.2 Measurement Uncertainty Reported by Participants

Participants were asked to report an estimate of the expanded uncertainty associated with their results and the basis of this uncertainty estimate.

It is a requirement of the ISO Standard 17025 that laboratories have procedures to estimate the uncertainty of chemical measurements and to report this uncertainty in specific circumstances, including when the client's instruction so requires.<sup>6</sup>

Seventy-eight of eighty-one results (96%) were reported with an expanded measurement uncertainty. Participants used a wide variety of procedures to estimate the expanded measurement uncertainty (Table 3). Laboratory **12** did not report uncertainties for organonitrogen and organophosphorus pesticides for which they are unaccredited.

The magnitude of reported uncertainties was within the range of 2.4% to 64%. Twelve were less than 15% relative, which the study coordinator believes is unrealistically small for a pesticide residue measurement.

Results returning a satisfactory z-score but an unsatisfactory  $E_n$ -score may have underestimated the uncertainty.

In some cases the results were reported with an inappropriate number of significant figures. The recommended format is to write uncertainty to no more than two significant figures and then to write the result with the corresponding number of decimal places (for example, instead of  $21.787 \pm 4.357 \ \mu g/L$ , it is better to report this as  $21.8 \pm 4.4 \ \mu g/L$ ).<sup>7</sup>

# 6.3 z-Score

Target standard deviations (SDs) equivalent to 15% performance coefficient of variation (PCV) were used to calculate z-scores. Target SDs, coefficient of variation predicted by Thompson-Horwitz equation<sup>9</sup> and between laboratories coefficient of variation obtained in this study are presented in Table 16.

| Sample     | Analyte            | Assigned<br>value<br>(µg/L) | Target SD<br>(as PCV)<br>(%) | Thompson-Horwitz<br>CV (%) | Between<br>Laboratories CV<br>(%) |
|------------|--------------------|-----------------------------|------------------------------|----------------------------|-----------------------------------|
| <b>S</b> 1 | cis-Chlordane      | 17.9                        | 15                           | 22                         | 25                                |
| <b>S</b> 1 | Endosulfan sulfate | 3.89                        | 15                           | 22                         | 32                                |
| S2         | Ethion             | 4.00                        | 15                           | 22                         | 20                                |
| S2         | Metsulfuron-methyl | 3.64                        | 15                           | 22                         | 2.6                               |
| S2         | Simazine           | 9.3                         | 15                           | 22                         | 20                                |
| <b>S</b> 3 | AMPA               | 28.5                        | 15                           | 22                         | 29                                |
| <b>S</b> 3 | Glyphosate         | 18.6                        | 15                           | 22                         | 14                                |

Table 16 Target SDs, CV from predictive model and CV between laboratories

The dispersal of participants' z-scores is graphically presented by laboratory in Figure 12, and by pesticide in Figure 13.

Of 65 results for which z-scores were calculated, 47 (72%) returned a satisfactory score of  $|z| \le 2$ .

Laboratories **6** and **15** reported results for all seven analytes for which z-scores were calculated. Laboratory **15** had satisfactory z-scores for all seven analytes.

No results reported by Laboratory 14 returned a satisfactory z-score.

# 6.4 E<sub>n</sub>-Score

Where a laboratory did not report an uncertainty estimate an uncertainty of zero (0) was used to calculate the  $E_n$ -score. The dispersal of participants'  $E_n$ -scores is graphically presented in Figure 14.

Of 65 results, 49 (75%) returned a satisfactory score of  $E_n \le 1$ .

Laboratory 15 had satisfactory  $E_n$ -scores for all seven analytes for which  $E_n$ -scores were calculated.

No results reported by Laboratory 14 returned a satisfactory E<sub>n</sub>-score.

#### 6.5 False negatives

Table 17 lists false negative results – a pesticide present for which a laboratory tested but did not report a result (e.g. laboratories reporting a '<' or NR result when the assigned value or spike value was higher than the participants' reporting limit, or laboratories that left the cell blank instead of entering NT as per instructions).

| Lab. Code | Sample     | Pesticide                               |
|-----------|------------|-----------------------------------------|
| 2         | <b>S</b> 1 | Chlordane, Endosulfan sulfate, Molinate |
| 2         | S2         | Ethion, Methomyl                        |
| 4         | <b>S</b> 1 | Chlordane                               |
|           | S2         | Simazine                                |
| 9         | S2         | Metsulfuron-methyl                      |
| 10        | <b>S</b> 1 | Diuron                                  |
| 12        | <b>S</b> 1 | Diuron                                  |

| Table 1 / False Negatives | Гable | 17 | False | Nega | tives |
|---------------------------|-------|----|-------|------|-------|
|---------------------------|-------|----|-------|------|-------|

#### 6.6 Reporting of Pesticides Not Spiked Into the Test Samples

Thirteen laboratories reported pesticides that were not spiked into the test samples. These are listed in Table 18.

| Lab. Code | Sample     | Pesticide        | Concentration (µg/L) | Uncertainty (µg/L) | Recovery (%) |
|-----------|------------|------------------|----------------------|--------------------|--------------|
|           | <b>C</b> 1 | Atrazine         | 0.005                | 0.000625           | NR           |
| 2         | 51         | Simazine         | 0.026                | 0.00325            | NR           |
| Z         | 52         | Atrazine         | 0.003                | 0.000375           | NR           |
|           | 52         | Diuron           | 0.156                | 0.0195             | NR           |
| 3         | <b>S</b> 1 | alpha-Endosulfan | 6.89                 | 0.97               | NR           |
|           |            | Bifenthrin       | 0.125                | 0.025              | NR           |
|           | <b>C</b> 1 | Chlorpyrifos     | 0.4                  | 0.08               | NR           |
|           | 51         | Permethrin       | 0.85                 | 0.17               | NR           |
| 4         |            | Simazine         | 0.25                 | 0.05               | NR           |
| 4         |            | Bifenthrin       | 0.25                 | 0.05               | NR           |
|           | 52         | Chlorpyrifos     | 0.676                | 0.13               | NR           |
|           | 52         | Diuron           | 0.14                 | 0.02               | NR           |
|           |            | Permethrin       | 1.56                 | 0.3                | NR           |
| 5         | <b>S</b> 1 | alpha-Endosulfan | 1.10                 | 0.41               | NR           |
| C         | 52         | p,p'-DDD         | 0.94                 | 0.28               | 68           |
| 0         | 52         | Total DDT        | 0.94                 | 0.28               | 68           |
| 7         | <b>S</b> 1 | beta-Endosulfan  | 0.0129               | 0.0078             | NR           |
| /         | S2         | Diuron           | 0.060                | 0.029              | NR           |
| 0         | <b>C</b> 1 | alpha-Endosulfan | 6.0                  | 1.1                | NR           |
| 0         | 51         | p,p'-DDT         | 0.4                  | 0.1                | NR           |
| 0         | <b>S</b> 1 | beta-Endosulfan  | 0.014                | 0.003              | NR           |
| 9         | S2         | Chlordane        | 0.204                | 0.022              | NR           |
| 12        | <b>S</b> 1 | Simazine         | 0.01                 | NR                 | NR           |
| 14        | <b>S</b> 1 | Prothiofos       | 26                   | 1.2                | NR           |
| 15        | <b>S</b> 1 | Ethion           | 0.059                | 0.0295             | 95           |
| 15        | <u>S</u> 2 | Diuron           | 0.078                | 0.039              | 98           |

Table 18 Reported pesticides not spiked in the test samples

| Lab. Code | Sample     | Pesticide        | Concentration (µg/L) | Uncertainty (µg/L) | Recovery (%) |
|-----------|------------|------------------|----------------------|--------------------|--------------|
| 16        | <b>S</b> 1 | Ethion           | 0.053                | 0.016              | 75           |
| 10        | S2         | Diuron           | 0.118                | 0.021              | 75           |
| 17        | S1         | alpha-Endosulfan | 4.01                 | 1.56               | NR           |

# 6.7 Participants' Analytical Methods

A variety of analytical methods were used for each group of analytes (Appendix 4).

For Samples S1 and S2 participants used direct injection, or different extractions techniques such as liquid-liquid and solid phase extractions. For the clean-up step, two participants used filtration and two participants used QuEChERS. Dichloromethane, hexane, ether, ethyl acetate, acetonitrile and mixtures of these were used as extraction solvents. Participants reported using GC-MS(MS), GC-(ECD, FPD, NPD), and LC-MS(MS). Three participants reported using the entire sample (500 mL) for the extraction, while other participants reported sample test portions ranging from 1 - 400 mL. No trends were identified with consideration to whether the whole sample was used, or what sample volume was used (Figure 15).



Figure 15 z-Score vs sample volume for pesticides in Samples S1 and S2

For Sample S3 (AMPA and glyphosate) two participants used direct injection and LC-MS(MS) for quantification, while the other participants used FMOC (fluorenylmethyloxycarbonyl chloride) to derivatise and LC-MS/MS for quantification. Participants reported sample test portions ranging from 0.5 - 100 mL. No trends were identified with consideration to what sample volume was used (Figure 16).



Figure 16 z-Score vs sample volume for AMPA and glyphosate in Samples S3

No trends were apparent with either the various extraction solvents used or the technique for quantification for all samples.

Recoveries were reported by participants in the range of 60 to 120%. Three laboratories reported correcting for recoveries.

#### 6.8 Certified Reference Materials (CRM)

Participants were requested to indicate whether a matrix specific certified reference material (CRM) had been used as part of the quality assurance for the analysis.

Twelve laboratories reported using 'certified standards', including:

- Sigma Aldrich
- Accustandard
- Dr Ehrenstorfer

These materials may not meet the internationally recognised definition of a Certified Reference Material:

'**reference material**, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures'<sup>10</sup>

#### 6.9 Comparison with Previous Studies

Overall percentages of satisfactory performance (presented as a percentage of the total number of scores for each study) obtained by the participant laboratories in Pesticides in Water proficiency tests since 2008 is presented in Figure 17.

To enable direct comparison, the target standard deviation used to calculate z-scores has been kept constant at 15% CV. The proportion of satisfactory z-scores over 12 years on average is 76%, while for  $E_n$ -scores on average for the same period is 73%.



Figure 17 Satisfactory z and En-scores – comparison with previous PT studies

#### 7 REFERENCES

- [1] ISO/IEC 17043:2010, Conformity assessment General requirements for Proficiency Testing.
- [2] NMI, Study Protocol for Proficiency Testing, viewed 21 October 2019, <a href="https://www.industry.gov.au/client-services/chemical-and-biological-measurement-services/proficiency-testing-services/">https://www.industry.gov.au/client-services/chemical-and-biological-measurement-services/</a>proficiency-testing-services>
- [3] NMI, Statistical Manual, viewed 21 October 2019, <a href="https://www.industry.gov.au/client-services/chemical-and-biological-measurement-services/proficiency-testing-services/">https://www.industry.gov.au/client-services/chemical-and-biological-measurement-services/</a>proficiency-testing-services>
- [4] Thompson, M., Ellison, S.L.R. and Wood, R. 2006, 'The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories', *Pure Appl. Chem*, vol 78, pp 145-196.
- [5] National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013, Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, <a href="https://www.legislation.gov.au/Details/F2013C00288">https://www.legislation.gov.au/Details/F2013C00288</a>>
- [6] ISO/IEC 17025:2017, General requirements for the competence of testing and calibration laboratories.
- [7] Eurachem/CITAC Guide CG 4, *Quantifying Uncertainty in Analytical Measurement*, 3<sup>rd</sup> edition, <http://www.eurachem.org/images/stories/Guides/pdf/QUAM2012\_P1.pdf>
- [8] ISO/IEC 13528:2015, Statistical methods for use in proficiency testing by interlaboratory comparison.
- [9] Thompson, M. and Lowthian, P.J. 1995, 'A Horwitz-like function describes precision in a proficiency test', *Analyst*, vol 120, pp 271-272.
- [10] JCGM 200:2012, International vocabulary of metrology Basic and general concepts and associated terms (VIM), 3<sup>rd</sup> edition.

# **APPENDIX 1 – SAMPLE PREPARATION AND HOMOGENEITY TESTING**

#### **Sample Preparation**

The three samples were prepared from surface water obtained from Browns Waterhole in the Turramurra area of Sydney. The water was filtered through a glass fibre filter and autoclaved.

The water used for Samples S1 and S2 was adjusted to pH 7.0 using hydrochloric acid. The spiking solutions were prepared by dissolving the standards in acetone. The test samples were stirred using a top-driven impeller stirrer for at least two hours. The samples were then dispensed into 500 mL amber glass bottles.

Sample S3 was prepared using filtered and autoclaved but not pH adjusted water. The glyphosate and AMPA were dissolved in water. The test samples were stirred using a top-driven impeller stirrer for at least two hours. The samples were then dispensed into 500 mL PET bottles.

Thirty-five bottles of each of Samples S1, S2 and S3 were prepared.

Between preparation and dispatch the samples were stored in a cool room at 4°C.

#### **Expanded Uncertainties**

Expanded uncertainties were estimated for the spiked concentration. Contributions to these uncertainties included the gravimetric and volumetric operation involved in spiking the samples and the purity of the pesticide reference standards. The expanded uncertainty of the spiked concentration at approximately 95% confidence was estimated to be 5% relative for all pesticides. Stability was not considered in the uncertainty budget and so the expanded uncertainty relates to the concentration of pesticide at the time of spiking.

#### **Homogeneity Testing**

The process used to prepare the samples was the same as previous NMI proficiency tests of pesticides in water. This process has been demonstrated to produce homogeneous samples and no homogeneity testing was conducted on these water samples.

#### **APPENDIX 2 – ROBUST AVERAGE AND ASSOCIATED UNCERTAINTY**

When the robust average was calculated using the procedure described in 'ISO 13258:2015(E), Statistical methods for use in proficiency testing by interlaboratory comparisons – Annex C',<sup>8</sup> the uncertainty was estimated as:

| $u_{rob av} = 1.2$  | $25 	imes S_{rob av} / \sqrt{p}$                     | Equation 4         |
|---------------------|------------------------------------------------------|--------------------|
| where:              |                                                      |                    |
| u <sub>rob av</sub> | robust average standard uncertainty                  |                    |
| $S_{rob av}$        | robust average standard deviation                    |                    |
| р                   | number of results                                    |                    |
| xpanded unce        | ertainty $(U_{rob,w})$ is the standard uncertainty n | nultiplied by a co |

The expanded uncertainty  $(U_{rob av})$  is the standard uncertainty multiplied by a coverage factor of 2 at approximately 95% confidence level.

A worked example is set out below in Table 19.

Table 19 Uncertainty of robust average for AMPA in Sample S3

| No. results (p) | 7          |
|-----------------|------------|
| Robust Average  | 28.49 µg/L |
| Srob av         | 8.22 μg/L  |
| $u_{rob\ av}$   | 3.88 µg/L  |
| k               | 2          |
| Urob av         | 7.76 μg/L  |

The robust average for AMPA in Sample S3 is  $28.5 \pm 7.8 \ \mu g/L$ .

# APPENDIX 3 – ACRONYMS AND ABBREVIATIONS

| ACN              | Acetonitrile                                                      |
|------------------|-------------------------------------------------------------------|
| AMPA             | Aminomethylphosphonic acid                                        |
| CITAC            | Cooperation on International Traceability in Analytical Chemistry |
| CRM              | Certified Reference Material                                      |
| CV               | Coefficient of Variation                                          |
| DCM              | Dichloromethane                                                   |
| ECD              | Electron Capture Detector                                         |
| $ \mathbf{E}_n $ | Absolute value of an E <sub>n</sub> -score                        |
| FMOC             | Fluorenylmethyloxycarbonyl chloride                               |
| FPD              | Flame Photometric Detector                                        |
| GC               | Gas Chromatography                                                |
| GUM              | Guide to the Expression of Uncertainty in Measurement             |
| HPLC             | High Performance Liquid Chromatography                            |
| IEC              | International Electrotechnical Commission                         |
| ISO              | International Standards Organisation                              |
| LC               | Liquid Chromatography                                             |
| LOR              | Limit of Reporting                                                |
| Max              | Maximum value in a set of results                                 |
| Md               | Median                                                            |
| Min              | Minimum value in a set of results                                 |
| MS               | Mass Spectrometry                                                 |
| MSMS             | Tandem Mass Spectrometry                                          |
| MU               | Measurement Uncertainty                                           |
| NATA             | National Association of Testing Authorities                       |
| NEPC             | National Environmental Protection Council                         |
| NMI              | National Measurement Institute (of Australia)                     |
| NPD              | Nitrogen-Phosphorus Detector                                      |
| NR               | Not Reported                                                      |
| NT               | Not Tested                                                        |
| OCP              | Organochlorine Pesticides                                         |
| ONP              | Organonitrogen Pesticides                                         |
| OPP              | Organophosphorus Pesticides                                       |
| p,p'-DDD         | Dichlorodiphenyldichloroethane                                    |
| p,p'-DDE         | Dichlorodiphenyldichloroethylene                                  |

| p,p'-DDT       | Dichlorodiphenyltrichloroethane                                  |
|----------------|------------------------------------------------------------------|
| PCV            | Performance Coefficient of Variation                             |
| PT             | Proficiency Test                                                 |
| QuEChERS       | Quick, Easy, Cheap, Effective, Rugged and Safe extraction method |
| R.A.           | Robust Average                                                   |
| S.V.           | Spiked or formulated concentration of a PT sample                |
| SD             | Standard Deviation                                               |
| SIM            | Selective ion monitoring                                         |
| SPE            | Solid Phase Extraction                                           |
| Target SD      | Target Standard Deviation                                        |
| $ \mathbf{Z} $ | Absolute value of a z-score                                      |
| σ              | Target standard deviation                                        |

#### **APPENDIX 4 – PARTICIPANTS' TEST METHODS**

| Lab. Code | Sample Vol. (mL) | Extraction    | Clean-up | Solvent               | Measurement |
|-----------|------------------|---------------|----------|-----------------------|-------------|
| 1         | 150              |               |          |                       |             |
| 2         | 1                |               |          |                       |             |
| 3         | 35               | Liquid-Liquid | None     | DCM                   | GCMS        |
| 4         | 100              | Liquid-Liquid | None     | Hex.DCM               | GCMS        |
| 5         | 35               | Liquid-Liquid | None     | DCM                   | GC-MSMS     |
| 6         | 1                | Liquid-Liquid | None     | DCM                   | GCMS        |
| 7         | 250              | Liquid-Liquid | None     | DCM                   | GC-ECD      |
| 8         | 500              | Liquid-Liquid | None     | DCM                   | GCMS        |
| 9         | 150-200          | Liquid-Liquid | None     | 15% Ether in Hexane   | GC-ECD      |
| 10        | 500              | SPE           | None     | DCM:ethyl acetate 1:1 | gcms        |
| 11        | 400              | Liquid-Liquid | Quechers | Ethyl Acetate         | GC-ECD      |
| 12        |                  | Liquid-Liquid | None     | Hexane                | GC-MS       |
| 13        |                  |               |          |                       |             |
| 14        |                  | Liquid-Liquid | None     | DCM                   | GC-ECD      |
| 15        | 100              |               |          |                       | GCMS        |
| 16        | 500              | Liquid-Liquid | None     | DCM                   | GCMS        |
| 17        | 100              |               |          |                       |             |

# Table 20 Test methods Sample S1 Chlordane

| Lab. Code | Extraction       | Clean-up            | Solvent      | Measurement       |
|-----------|------------------|---------------------|--------------|-------------------|
| 1         |                  |                     |              |                   |
| 2         | Inline SPE       | filtered on 0.22 um |              | LCMS              |
| 3         |                  |                     |              |                   |
| 4         | Direct Injection | 0.22u Filter        |              | LCMSMS            |
| 5         |                  |                     |              |                   |
| 6         | Direct Injection | None                |              | LCMSMS            |
| 7         | Liquid-Liquid    | None                | DCM          | GCMS-SIM          |
| 8         |                  |                     |              |                   |
| 9         |                  |                     |              |                   |
| 10        | Direct Injection | None                |              | lcms<br>lcms neat |
| 11        |                  |                     |              |                   |
| 12        | Liquid-Liquid    | QuEChERS            | Acetonitrile | LC_MS/MS          |
| 13        |                  |                     |              |                   |
| 14        |                  |                     |              |                   |
| 15        |                  |                     |              | LCMS              |
| 16        | SPE              | None                | ACN&DCM      | LCMS              |
| 17        |                  |                     |              |                   |

Table 21 Test methods Sample S1 Diuron

| Lab. Code | Extraction    | Clean-up | Solvent               | Measurement |
|-----------|---------------|----------|-----------------------|-------------|
| 1         | Liquid-Liquid | None     | Hexane                | GC-ECD      |
| 2         |               |          |                       |             |
| 3         | Liquid-Liquid | None     | DCM                   | GCMS        |
| 4         | Liquid-Liquid | None     | Hex.DCM               | GCMS        |
| 5         | Liquid-Liquid | None     | DCM                   | GC-MSMS     |
| 6         | Liquid-Liquid | None     | DCM                   | GCMS        |
| 7         | Liquid-Liquid | None     | DCM                   | GC-ECD      |
| 8         | Liquid-Liquid | None     | DCM                   | GCMS        |
| 9         | Liquid-Liquid | None     | 15% Ether in Hexane   | GC-ECD      |
| 10        | SPE           | None     | DCM:ethyl acetate 1:1 | gcms        |
| 11        | Liquid-Liquid | Quechers | Ethyl Acetate         | GC-ECD      |
| 12        | Liquid-Liquid | None     | Hexane                | GC-MS       |
| 13        |               |          |                       |             |
| 14        | Liquid-Liquid | None     | DCM                   | GC-ECD      |
| 15        |               |          |                       | GCMS        |
| 16        | Liquid-Liquid | None     | DCM                   | GCMS        |
| 17        | Liquid-Liquid | None     | DCM                   | GCMS        |

# Table 22 Test methods Sample S1 Endosulfan sulfate

| Lab. Code | Extraction       | Clean-up | Solvent               | Measurement            |
|-----------|------------------|----------|-----------------------|------------------------|
| 1         |                  |          |                       |                        |
| 2         |                  |          |                       |                        |
| 3         |                  |          |                       |                        |
| 4         | Liquid-Liquid    | None     | Hex.DCM               | GCMS                   |
| 5         |                  |          |                       |                        |
| 6         | Direct Injection | None     |                       | LCMSMS                 |
| 7         | Liquid-Liquid    | None     | DCM                   | GCMS-SIM               |
| 8         |                  |          |                       |                        |
| 9         | Liquid-Liquid    | None     | DCM                   | GC-MS                  |
| 10        | SPE              | None     | DCM:ethyl acetate 1:1 | gcms/lcms<br>LCMS neat |
| 11        |                  |          |                       |                        |
| 12        | Liquid-Liquid    | QuEChERS | Acetonitrile          | LC_MS/MS               |
| 13        |                  |          |                       |                        |
| 14        |                  |          |                       |                        |
| 15        |                  |          |                       | LCMS                   |
| 16        |                  |          |                       |                        |
| 17        |                  |          |                       |                        |

# Table 23 Test methods Sample S1 Molinate

| Lab. Code | Extraction       | Clean-up | Solvent             | Measurement |
|-----------|------------------|----------|---------------------|-------------|
| 1         | Liquid-Liquid    | None     | Ethyl acetate       | GC-FPD      |
| 2         |                  |          |                     |             |
| 3         |                  |          |                     |             |
| 4         | Liquid-Liquid    | None     | Hex.DCM             | GCMS        |
| 5         |                  |          |                     |             |
| 6         | Direct Injection | None     |                     | LCMSMS      |
| 7         | Liquid-Liquid    | None     | DCM                 | GCMS-SIM    |
| 8         | Liquid-Liquid    | None     | DCM                 | GCMS        |
| 9         | Liquid-Liquid    | None     | 15% Ether in Hexane | GC-ECD      |
| 10        |                  |          |                     |             |
| 11        | Liquid-Liquid    | Quechers | Ethyl Acetate       | GC-NPD      |
| 12        |                  |          |                     |             |
| 13        |                  |          |                     |             |
| 14        | Liquid-Liquid    | None     | DCM                 | GCMS        |
| 15        |                  |          |                     | GCMS        |
| 16        | Liquid-Liquid    | None     | DCM                 | GCMS        |
| 17        |                  |          |                     |             |

Table 24 Test methods Sample S2 Ethion

| Lab. Code | Extraction       | Clean-up     | Solvent      | Measurement |
|-----------|------------------|--------------|--------------|-------------|
| 1         |                  |              |              |             |
| 2         |                  |              |              |             |
| 3         |                  |              |              |             |
| 4         | Direct Injection | 0.22u Filter |              | LCMSMS      |
| 5         |                  |              |              |             |
| 6         |                  |              |              |             |
| 7         |                  |              |              |             |
| 8         |                  |              | DCM          | GCMS        |
| 9         |                  |              |              |             |
| 10        |                  |              |              |             |
| 11        |                  |              |              |             |
| 12        | Liquid-Liquid    | QuEChERS     | Acetonitrile | LC_MS/MS    |
| 13        |                  |              |              |             |
| 14        |                  |              |              |             |
| 15        |                  |              |              | LCMS        |
| 16        | SPE              | None         | ACN&DCM      | LCMS        |
| 17        |                  |              |              |             |

# Table 25 Test methods Sample S2 Methomyl

| Lab. Code | Extraction       | Clean-up            | Solvent | Measurement       |
|-----------|------------------|---------------------|---------|-------------------|
| 1         |                  |                     |         |                   |
| 2         | Inline SPE       | filtered on 0.22 um |         | LCMS              |
| 3         |                  |                     |         |                   |
| 4         | Direct Injection | 0.22u Filter        |         | LCMSMS            |
| 5         |                  |                     |         |                   |
| 6         | Direct Injection | None                |         | LCMSMS            |
| 7         |                  |                     |         |                   |
| 8         |                  |                     | DCM     | GCMS              |
| 9         | Liquid-Liquid    | None                | DCM     | GC-MS             |
| 10        | Direct Injection | None                |         | lcms<br>LCMS neat |
| 11        |                  |                     |         |                   |
| 12        |                  |                     |         |                   |
| 13        |                  |                     |         |                   |
| 14        |                  |                     |         |                   |
| 15        |                  |                     |         | LCMS              |
| 16        | SPE              | None                | ACN&DCM | LCMS              |
| 17        |                  |                     |         |                   |

# Table 26 Test methods Sample S2 Metsulfuron-methyl

| Lab. Code | Extraction       | Clean-up            | Solvent               | Measurement            |
|-----------|------------------|---------------------|-----------------------|------------------------|
| 1         |                  |                     |                       |                        |
| 2         | Inline SPE       | filtered on 0.22 um |                       | LCMS                   |
| 3         |                  |                     |                       |                        |
| 4         | Direct Injection | 0.22u Filter        |                       | LCMSMS                 |
| 5         |                  |                     |                       |                        |
| 6         | Direct Injection | None                |                       | LCMSMS                 |
| 7         | Liquid-Liquid    | None                | DCM                   | GCMS-SIM               |
| 8         |                  |                     |                       |                        |
| 9         | Liquid-Liquid    | None                | DCM                   | GC-MS                  |
| 10        | SPE              | None                | DCM:ethyl acetate 1:1 | gcms/lcms<br>LCMS neat |
| 11        |                  |                     |                       |                        |
| 12        | Liquid-Liquid    | QuEChERS            | Acetonitrile          | LC_MS/MS               |
| 13        |                  |                     |                       |                        |
| 14        |                  |                     |                       |                        |
| 15        |                  |                     |                       | LCMS                   |
| 16        | SPE              | None                | ACN&DCM               | LCMS                   |
| 17        |                  |                     |                       |                        |

Table 27 Test methods Sample S2 Simazine

| Lab. Code | Sample Vol. (mL) | Extraction       | Derivatisation Procedure | Derivatisation Agent | Measurement                        |
|-----------|------------------|------------------|--------------------------|----------------------|------------------------------------|
| 1         |                  |                  |                          |                      |                                    |
| 2         |                  |                  |                          |                      |                                    |
| 3         | 0.5              | n/a              |                          | n/a                  | LCMS-MS<br>Direct injection method |
| 4         | 2                |                  | Pre-column               | FMOC                 | LCMSMS                             |
| 5         |                  |                  |                          |                      |                                    |
| 6         | 100              |                  | Pre-column               | FMOC                 | LCMSMS                             |
| 7         |                  |                  |                          |                      |                                    |
| 8         |                  | Direct Injection |                          |                      | LCMS                               |
| 9         | 0.9              | nil              | Pre-column               | FMOC                 | LCMS-QQQ                           |
| 10        | 25               | None             | Pre-column               | FMOC-CL              | LCMS QQQ                           |
| 11        |                  |                  |                          |                      |                                    |
| 12        |                  |                  |                          |                      |                                    |
| 13        | 10               | NA               | Pre-column               | FMOC                 | LC/MS/MS                           |
| 14        |                  |                  |                          |                      |                                    |
| 15        | 1                |                  |                          | FMOC                 | LCMSMS                             |
| 16        |                  |                  |                          |                      |                                    |
| 17        |                  |                  |                          |                      |                                    |

# Table 28 Test methods Sample S3 AMPA and Glyphosate

# END OF REPORT