

Australian Government

Department of Industry, Science and Resources National Measurement Institute

Proficiency Test Final Report AQA 22-17 Trace Elements in Sea Water and River Water

February 2023

© Commonwealth of Australia 2023.

Unless otherwise noted, the Commonwealth owns the copyright (and any other intellectual property rights, if any) in this publication.

All material in this publication is provided under a Creative Commons Attribution 4.0 International Licence (CC BY 4.0), with the exception of:

- the Commonwealth Coat of Arms;
- the logo of the Department of Industry, Science and Resources;
- photographs of our staff and premises; and
- content supplied by third parties.

Creative Commons Attribution 4.0 International Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available at: creativecommons.org/licenses/by/4.0/. Further details are available on the Creative Commons website, at: creativecommons.org/licenses/by/4.0/legalcode.

You may not copy, distribute, transmit or adapt any material in this publication in any way that suggests that this department or the Commonwealth endorses you or any of your services or products.

Attribution

Material contained in this publication is to be attributed to this department as:

© Commonwealth of Australia, Department of Industry, Science and Resources, Proficiency Test Final Report AQA 22-17 Trace Elements in Sea Water and River Water, 2023.

Third party copyright

Wherever a third party holds copyright in material contained in this publication, the copyright remains with that party. Their permission may be required to use the material.

This department has made all reasonable efforts to:

- clearly label material where the copyright is owned by a third party;
- ensure that the copyright owner has consented to this material being contained in this publication.

Using the Commonwealth Coat of Arms

The terms of use for the Coat of Arms are available on the Department of Prime Minister and Cabinet's website, at <u>www.pmc.gov.au/resource-centre/government/commonwealth-coat-arms-information-and-guidelines</u>

ACKNOWLEDGMENTS

This study was conducted by the National Measurement Institute (NMI). Support funding was provided by the Australian Government Department of Industry, Science and Resources.

I would like to thank the management and staff of the participating laboratories for supporting the study. It is only through widespread participation that we can provide an effective service to laboratories.

The assistance of the following NMI staff members in the planning, conduct and reporting of the study is acknowledged.

Luminita Antin Andrew Evans Hamish Lenton Isaac Schipp

Raluca Iavetz Manager, Chemical Reference Values

Phone: 61-2-9449 0111 proficiency@measurement.gov.au

NATA Accredited for compliance with ISO/IEC 17043

THIS PAGE IS INTENTIONALLY BLANK

TABLE OF CONTENTS

SUMMARY	IV
1 INTRODUCTION	1
1.1 NMI Proficiency Testing Program	1
1.2 Study Aims	1
1.3 Study Conduct	1
2 STUDY INFORMATION	1
2.1 Selection of Matrices and Inorganic Analytes	1
2.2 Participation	1
2.3 Test Material Specification	2
2.4 Laboratory Code	2
2.5 Sample Preparation, Analysis and Homogeneity Testing	2
2.6 Stability of Analytes	2
2.7 Sample Storage, Dispatch and Receipt	2
2.8 Instructions to Participants	2
2.9 Interim Report	3
3 PARTICIPANT LABORATORY INFORMATION	4
3.1 Methodology for Total and Dissolved Elements	4
3.2 Additional Information	4
3.3 Basis of Participants' Measurement Uncertainty Estimates	4
3.4 Participant Comments on this PT Study or Suggestions for Future Studies	5
4 PRESENTATION OF RESULTS AND STATISTICAL ANALYSIS	6
4.1 Results Summary	6
4.4 Robust Average and Robust Between-Laboratory Coefficient of Variation	6
5 TABLES AND FIGURES	8
6 DISCUSSION OF RESULTS	88
6.1 Assigned Value	88
6.2 Measurement Uncertainty Reported by Participants	88
6.3 z-Score	89
6.4 E _n -score	91
6.5 Participants' Results and Analytical Methods for Total and Dissolved Elements	97
6.6 z-Score Scatter plots	105
6.7 Comparison with Previous NMI Proficiency Tests of Metals in Water	107
6.8 Reference Materials and Certified Reference Materials	107
7 REFERENCES	109
APPENDIX 1 – SAMPLE PREPARATION, ANALYSIS AND HOMOGENEITY TESTING	110
Sample Preparation	110
Sample Analysis and Homogeneity Testing	110
APPENDIX 2 – ASSIGNED VALUE, Z-SCORE AND E _N SCORE CALCULATION	112
APPENDIX 3 - USING PT DATA FOR UNCERTAINTY ESTIMATION	113
APPENDIX 4 - ACRONYMS AND ABBREVIATIONS	115
APPENDIX 5 - INSTRUMENT DETAILS FOR DISSOLVED ELEMENTS	116

SUMMARY

This report presents the results of the proficiency test AQA 22-17, Trace Elements in Sea Water and River Water. The study focused on the measurement of dissolved Ag, Al, As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, P, Pb, Sb, Se, Sn, Tl, U, V and Zn in sea water and of dissolved Ag, Al, As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V and Zn in river water.

The assigned values were the robust averages of participants' results. The associated uncertainties were estimated from the robust standard deviation of participants' results.

The outcomes of the study were assessed against the aims as follows, to:

i. compare the performance of participant laboratories and assess their accuracy;

Laboratory performance was assessed using both z-scores and En-scores.

Of 468 scored results, 441 (94%) returned a satisfactory score of $|z| \le 2.0$.

Of 468 scored results, 405 (87%) returned a satisfactory score of $|E_n| \le 1.0$.

Laboratory 7 reported results for all 40 tests and all returned satisfactory z-scores and E_n -scores.

ii. evaluate the laboratories' methods used in determination of inorganic analytes in sea water and river water;

The results reported for trace elements in the sea water sample were more variable and had more unsatisfactory results than in the fresh water sample. Arsenic and selenium in sea water were the tests which most challenged participants' analytical techniques when compared to the river water sample.

For As measurements in sea water participants reported using ICP-MS in collision or reaction mode with He or O_2 as collision/reaction gases. For Se measurements participants used ICP-MS in collision mode with He or HEHe or in reaction mode with O_2 , H_2 or NH_3 .

Chromium results in the river water sample were more variable than those in sea water. The high carbon content in the river water may explain the discrepancy.

A limited number of laboratories reported results for P in sea water.

Low level P and Se in sea water were the tests which presented the most analytical difficulty to participating laboratories with CVs of 27% and 22% respectively.

iii. compare the performance of participant laboratories with their past performance; AQA 22-17 is the 31^{st} NMI proficiency study of metals in water. Over last 10 years, the average proportion of satisfactory scores was 91% for z-scores and 83% for E_n-scores.

iv. develop the practical application of traceability and measurement uncertainty and provide participants with information that will be useful in assessing their uncertainty estimates;

Of 468 numerical results, 462 (99%) were reported with an expanded measurement uncertainty. The magnitude of these expanded uncertainties was within the range 1% to 208% of the reported value. An example of estimating measurement uncertainty using only the proficiency testing data is given in Appendix 3.

v. produce materials that can be used in method validation and as control samples. Surplus test samples from the present study are available for sale.

A certified reference material for metals in sea water (MX014) with reference values traceable to SI is also available for sale from NMI.

1 INTRODUCTION

1.1 NMI Proficiency Testing Program

The National Measurement Institute (NMI) is responsible for Australia's national measurement infrastructure providing a wide range of services, including a chemical proficiency testing program.

Proficiency testing (PT) "is evaluation of participant performance against pre-established criteria by means of inter-laboratory comparison."¹ NMI PT studies target chemical testing in areas of high public significance such as trade, environment and food safety. NMI offers studies in:

- inorganic analytes in soil, water, food and pharmaceuticals;
- pesticide residues in fruit and vegetables, soil and water;
- petroleum hydrocarbons in soil and water;
- PFAS in water, soil, biota and food;
- controlled drug assay; and
- folic acid in flour.

AQA 22-17 is the 31st NMI proficiency study of metals in water.

1.2 Study Aims

The aims of the study were to:

- compare the performance of participant laboratories and assess their accuracy;
- evaluate the laboratories methods used in determination of inorganic analytes in river and sea water;
- compare the performance of participant laboratories with their past performance;
- develop the practical application of traceability and measurement uncertainty; and
- produce materials that can be used in method validation and as control samples.

1.3 Study Conduct

The conduct of NMI proficiency tests is described in the NMI Chemical Proficiency Testing Study Protocol.² The statistical methods used are described in the NMI Chemical Proficiency Statistical Manual.³ These documents have been prepared with reference to ISO Standard 17043¹ and The International Harmonized Protocol for Proficiency Testing of (Chemical) Analytical Laboratories.⁴

NMI is accredited by National Association of Testing Authorities, Australia (NATA) to ISO/IEC 17043 as a provider of proficiency testing schemes. This proficiency test is within the scope of NMI's accreditation.

The choice of the test method was left to the participating laboratories.

2 STUDY INFORMATION

2.1 Selection of Matrices and Inorganic Analytes

The 40 tests were selected from those for which an investigation level is published in Australian and New Zealand Guidelines for Fresh and Marine Water Quality⁵ and are commonly measured by water testing laboratories.

2.2 Participation

Eighteen laboratories participated and seventeen submitted results.

The timetable of the study was:

Invitation issued:	14 October 2022
Samples dispatched:	14 November 2022
Results due:	16 December 2022
Interim report issued:	21 December 2022

2.3 Test Material Specification

Two samples were provided for analysis:

Sample S1 was 100 mL of filtered sea water preserved by adding 2% (v/w) nitric acid; and **Sample S2** was 100 mL of filtered river water preserved by adding 2% (v/w) nitric acid and 0.01% (v/w) hydrochloric acid.

2.4 Laboratory Code

All participant laboratories were assigned a confidential code number.

2.5 Sample Preparation, Analysis and Homogeneity Testing

A partial homogeneity test was conducted in this study. The same validated preparation procedure was followed as in previous studies.² Test samples from previous studies were demonstrated to be sufficiently homogeneous for the evaluation of participants' performance. The results from the partial homogeneity test are reported in this study as the homogeneity values. No homogeneity testing was conducted for Al in S1.

The preparation and analysis are described in Appendices 1 and 3.

2.6 Stability of Analytes

No stability study was carried out for Samples S1 and S2. Stability studies conducted for similar previous studies of metals in river and sea water including the MX014 certification found no significant changes in any of the analytes' concentration.

2.7 Sample Storage, Dispatch and Receipt

Samples S1 and S2 were refrigerated before dispatch.

The samples were dispatched by courier on 14 November 2022.

A description of the test samples, instructions for participants, and a form for participants to confirm the receipt of the test samples, were sent with the samples.

An Excel spreadsheet for the electronic reporting of results was e-mailed to participants.

2.8 Instructions to Participants

Participants were instructed as follows:

- Quantitatively analyse the samples using your normal test method.
- Participants are asked to report results in units of $\mu g/L$ for:

SAMPLE S1 sea water		SAMPLE river wat	
Test DISSOLVED	Approximate Conc. Range μg/L	Test DISSOLVED	Approximate Conc. Range µg/L
Ag	<10	Ag	<10
Al	<50	Al	<250
As	<10	As	<10

Be	<10	Be	<50
Cd	<10	Cd	<10
Cr	<10	Со	<10
Cu	<50	Cr	<10
Fe	<250	Cu	<250
Hg	<2	Fe	<2000
Mn	<50	Hg	<2
Ni	<10	Mn	<250
Р	<250	Мо	<50
Pb	<10	Ni	<10
Sb	<10	Pb	<10
Se	<10	Sb	<50
Sn	<10	Se	<10
T1	<10	Tl	<10
U	<10	U	<10
V	<10	V	<10
Zn	<50	Zn	<250

- Report results using the electronic results sheet emailed to you.
- Report results as you would report to a client. For each analyte in each sample, report the expanded measurement uncertainty associated with your analytical result (e.g. 5.23 $\pm 0.51 \ \mu g/L$).
- Please send us the requested details regarding the test method and the basis of your uncertainty estimate.

2.9 Interim Report

An interim report was emailed to participants on 21 December 2022.

3 PARTICIPANT LABORATORY INFORMATION

3.1 Methodology for Dissolved Elements

Summaries of test methods are transcribed in Tables 1 and 2. The instruments and settings reported by participants are presented in Appendix 5.

Lab. Code	Method Reference	Sample Volume (mL)	Temp. (°C)	Time (min)	HNO ₃ (mL)	HCl (mL)	HNO ₃ (1:1) (mL)	.HCl (1:1) (mL)	H2O2 (mL)	Other (mL)
2*	USEPA 200.8 & 245, APHA 3125									
6	In house W32 and W32a referencing APHA 3125									
7	Inhouse method with reference to USEPA6020	14	95	90	0.28	0.42				
8	APHA	20	95	120	1	0.5				
10		30	95- 100	90	2					
11		20	100	60	0.5	0.5				
12	In House, US EPA 6020B									
13*	APHA 3125	5	95	120	2	1				
14*	EPA6020 and APHA3112	10	95	120	0.25					0.5 (H ₂ SO ₄)
15	analysed as received									
16	APHA 3125 B									
18	In-house test method									

Table 1 Methodology for Total Elements

*Additional Information in Table 2.

3.2 Additional Information

Participants had the option to report additional information for each sample analysed. These are transcribed in Table 2.

Table 2 Additional information

Lab Code	Additional Information
2	Methodology: Not digested
13	Sample S1: We are not accredited for Sea Water and ordered this sample by mistake
14	Methodology: 1.5 mL KMNO4 and 1 mL K2S2O8 also added into digestion tube Instrument Techniques: Collision/Reaction Cell with Kinetic Energy Discrimination

3.3 Basis of Participants' Measurement Uncertainty Estimates

Participants were requested to provide information about the basis of their uncertainty estimates (Table 3).

Lab.	Approach to Estimating MU	Information Sources	for MU Estimation ^a	Guide Document for
Code		Precision	Method Bias	Estimating MU
1	Top Down - precision and estimates of the method and laboratory bias	Control Samples - CRM Duplicate Analysis	CRM Recoveries of SS	Eurachem/CITAC Guide

Lab.	Approach to Estimating MU	Information Sources	Guide Document for	
Code	Approach to Estimating MC	Precision		Estimating MU
2	Bottom Up (ISO/GUM, fish bone/ cause and effect diagram)	Control Samples - CRM Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Recoveries of SS	ISO/GUM
4	Standard deviation of replicate analyses multiplied by 2 or 3	Control Samples - SS Duplicate Analysis		
5	Top Down - precision and estimates of the method and laboratory bias	Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Recoveries of SS	NMI Uncertainty Course
6	Top Down - precision and estimates of the method and laboratory bias	Control Samples Duplicate Analysis	CRM	Nordtest Report TR537
7	Bottom Up (ISO/GUM, fish bone/ cause and effect diagram)	Control Samples - SS Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Recoveries of SS	Eurachem/CITAC Guide
8	Top Down - precision and estimates of the method and laboratory bias	Control Samples Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Recoveries of SS	Eurachem/CITAC Guide
9	Top Down - precision and estimates of the method and laboratory bias	Control Samples - CRM Duplicate Analysis Instrument Calibration	CRM Instrument Calibration Recoveries of SS	ISO/GUM
10	Top Down - precision and estimates of the method and laboratory bias	Control Samples - CRM Duplicate Analysis	CRM Recoveries of SS	Nordtest Report TR537
11	Control charts	Control Samples - CRM	CRM Instrument Calibration Recoveries of SS	ASTM E2554-13
12	Top Down - precision and estimates of the method and laboratory bias	Control Samples - SS	Recoveries of SS	ISO/GUM
13	Top Down - precision and estimates of the method and laboratory bias	Control samples - CRM	CRM Instrument Calibration	Eurachem/CITAC Guide
14	Professional judgment	Control Samples - CRM	CRM Recoveries of SS	Inhouse Method
15	Standard deviation of replicate analyses multiplied by 2 or 3	Duplicate Analysis	CRM	
16	Top Down - precision and estimates of the method and laboratory bias	Control Samples - SS Duplicate Analysis Instrument Calibration	Instrument Calibration Recoveries of SS	Eurachem/CITAC Guide
18	Top Down - precision and estimates of the method and laboratory bias	Duplicate Analysis	CRM	Eurachem/CITAC Guide

^a RM = Reference Material, CRM = Certified Reference Material, SS = Spiked samples.

3.4 Participant Comments on this PT Study or Suggestions for Future Studies

The study co-ordinator welcomes comments or suggestions from participants about this study or possible future studies. Such feedback may be useful in improving future studies.

There were no participants' comments reported in this study.

4 PRESENTATION OF RESULTS AND STATISTICAL ANALYSIS

4.1 Results Summary

Participant results are listed in Tables 4 to 43 with results' summary statistics: robust average, median, maximum, minimum, robust standard deviation (SD_{rob}) and robust coefficient of variation (CV_{rob}). Bar charts of results and performance scores are presented in Figures 2 to 41. An example chart with an interpretation guide is shown in Figure <u>1</u>.

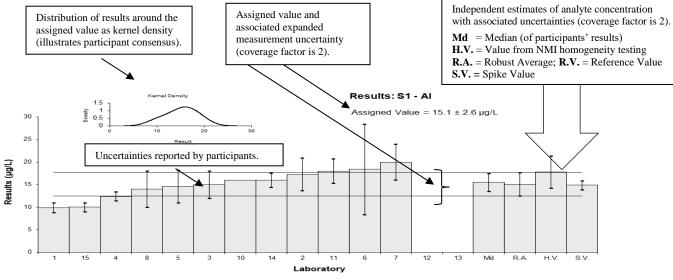


Figure 1 Guide to Presentation of Results

4.2 Outliers and Extreme Outliers

Outliers were results less than 50% and greater than 150% of the robust average and were removed before assigned value calculation. Extreme outliers (gross errors) were obvious blunders, such as those with incorrect units, decimal errors, or results from a different proficiency test item and were removed for calculation of summary statistics.^{3, 4,6}

4.3 Assigned Value

An example of the assigned value calculation using data from the present study is given in Appendix 2. The assigned value is defined as: 'the value attributed to a particular property of a proficiency test item.'¹ In this study, the property is the mass fraction of analyte. Assigned values were the robust average of participants' results, outliers removed; the expanded uncertainties were estimated from the associated robust standard deviations.^{4, 6}

4.4 Robust Average and Robust Between-Laboratory Coefficient of Variation

The robust averages and associated expanded measurement uncertainties were calculated using the procedure described in 'Statistical methods for use in proficiency testing by interlaboratory comparisons, ISO13528:2022'.⁶ The robust between-laboratory coefficient of variation (robust CV) is a measure of the variability of participants' results and was calculated using the procedure described in ISO13528:2022.⁶

4.5 Target Standard Deviation for Proficiency Assessment

The target standard deviation for proficiency assessment (σ) is the product of the assigned value (*X*) and the performance coefficient of variation (PCV). This value is used for calculation of participant z-score and provides scaling for laboratory deviation from the assigned value.

$$\sigma = X^* \text{ PCV}$$
 Equation 1

It is important to note that the PCV is a fixed value and is not the standard deviation of participants' results. The fixed value set for PCV is based on the existing regulation, the acceptance criteria indicated by the methods, the matrix, the concentration level of analyte and on experience from previous studies. It is backed up by mathematical models such as Thompson Horwitz equation.⁷

4.6 z-Score

An example of z-score calculation using data from the present study is given in Appendix 2. For each participants' result a z-score is calculated according to Equation 2 below:

$$z = \frac{(\chi - X)}{\sigma}$$
 Equation 2

where:

z is z-score;

- χ is participants' result;
- X is the study assigned value;
- σ is the target standard deviation.

A z-score with absolute value (|z|):

- $|z| \le 2.0$ is satisfactory;
- 2.0 < |z| < 3.0 is questionable;
- $|z| \ge 3.0$ is unsatisfactory.

4.7 E_n-Score

An example of E_n -score calculation using data from the present study is given in Appendix 2. The E_n -score is complementary to the z-score in assessment of laboratory performance. E_n -score includes measurement uncertainty and is calculated according to Equation 3 below:

$$E_n = \frac{(\chi - X)}{\sqrt{U_{\chi}^2 + U_X^2}}$$
 Equation 3

where:

 E_n is E_n-score;

 χ is participants' result;

X is the assigned value;

 U_{χ} is the expanded uncertainty of the participants' result;

 U_X is the expanded uncertainty of the assigned value.

An E_n -score with absolute value ($|E_n|$):

- $|E_n| \le 1.0$ is satisfactory;
- $|E_n| > 1.0$ is unsatisfactory.

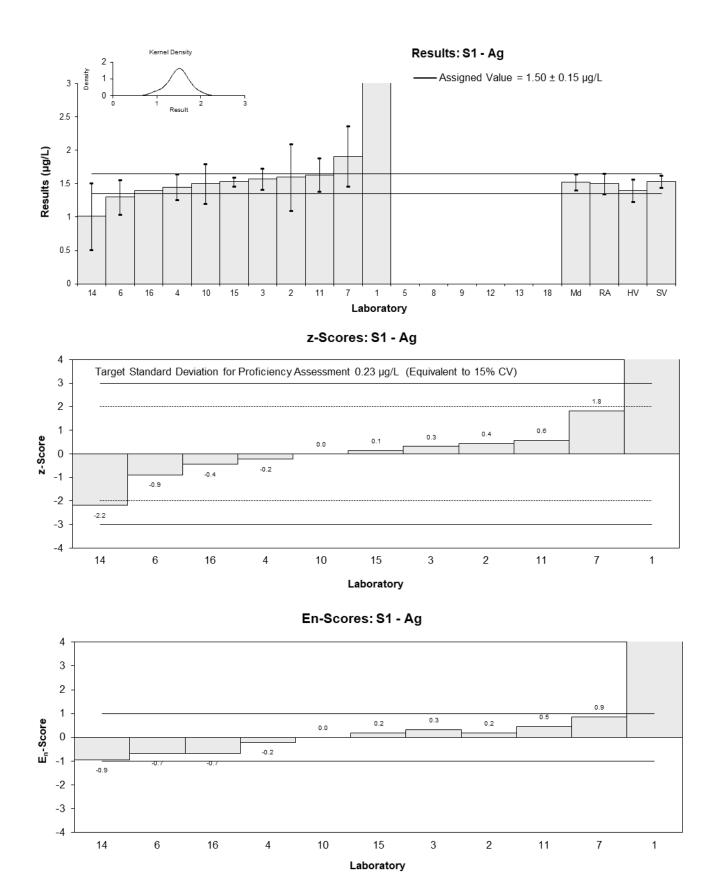
4.8 Traceability and Measurement Uncertainty

Laboratories accredited to AS ISO/IEC Standard 17025:2018⁸ must establish and demonstrate the traceability and measurement uncertainty associated with their test results. Guidelines for quantifying uncertainty in analytical measurement are described in the Eurachem/CITAC Guide.⁹

5 TABLES AND FIGURES

Table 4

Sample Details

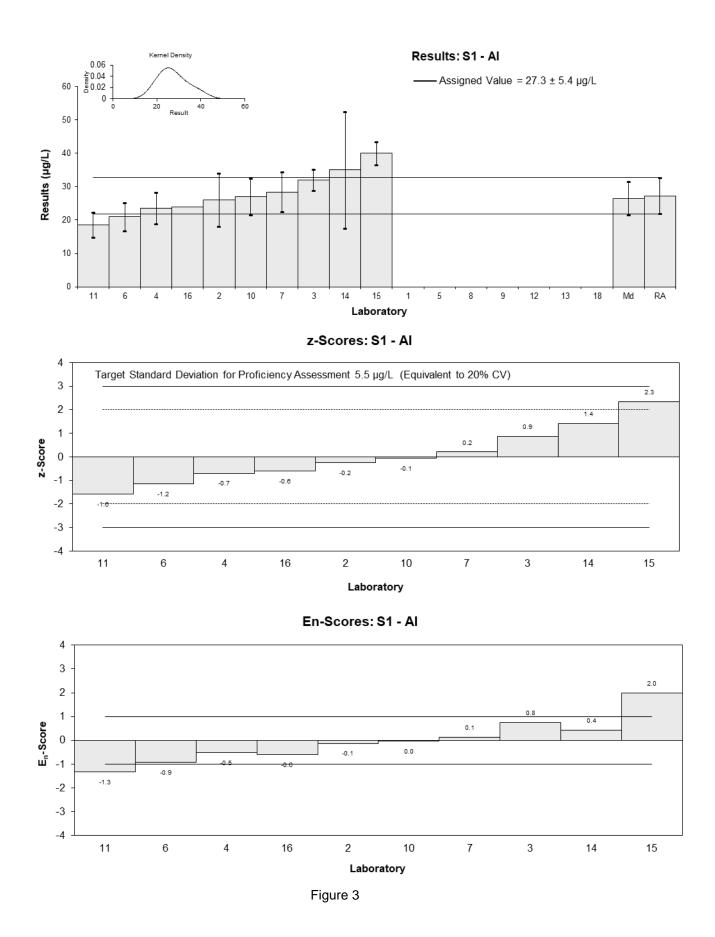

Sample No.	S1
Matrix	Sea Water
Analyte	Ag
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1**	24.1	2.61	100.44	8.64
2	1.6	0.5	0.44	0.19
3	1.57	0.16	0.31	0.32
4	1.45	0.19	-0.22	-0.21
5	NR	NR		
6	1.3	0.26	-0.89	-0.67
7	1.91	0.45	1.82	0.86
8	NT	NT		
9	< 5	1		
10	1.5	0.30	0.00	0.00
11	1.63	0.25	0.58	0.45
12	<5	<1.5		
13	NT	NT		
14	1.01	0.5	-2.18	-0.94
15	1.53	0.07	0.13	0.18
16	1.4	NR	-0.44	-0.67
18	NT	NT		

** Gross Error, see Section 4.2

Assigned Value	1.50	0.15
Spike Value	1.53	0.09
Homogeneity Value	1.40	0.17
Robust Average	1.50	0.15
Median	1.52	0.12
Mean	1.49	
Ν	10	
Max	1.91	
Min	1.01	
Robust SD	0.18	
Robust CV	12%	



Sample No.	S1
Matrix	Sea Water
Analyte	AI
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	<50	NR		
2	26	8	-0.24	-0.13
3	32	3.2	0.86	0.75
4	23.5	4.7	-0.70	-0.53
5	NR	NR		
6	21	4.2	-1.15	-0.92
7	28.4	6.0	0.20	0.14
8	NT	NT		
9	< 50	10		
10	27	5.4	-0.05	-0.04
11	18.6	3.7	-1.59	-1.33
12	<50	<15		
13	NT	NT		
14	35	17.5	1.41	0.42
15	40.0	3.40	2.33	1.99
16	24	NR	-0.60	-0.61
18	NT	NT		

Assigned Value	27.3	5.4
Spike Value	Not Spiked	
Robust Average	27.3	5.4
Median	26.5	5.0
Mean	27.6	
Ν	10	
Мах	40	
Min	18.6	
Robust SD	6.9	
Robust CV	25%	

Sample No.	S1
Matrix	Sea Water
Analyte	As
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<5	NR		
2	3.0	2.6	0.43	0.09
3	2.77	0.28	0.02	0.02
4	2.92	0.41	0.29	0.30
5	2.7	1	-0.11	-0.06
6	1.8	0.36	-1.74	-1.91
7	2.37	0.53	-0.71	-0.61
8	NT	NT		
9	2.9	0.58	0.25	0.21
10	2.5	0.50	-0.47	-0.43
11	3.72	0.60	1.74	1.38
12	3.46	0.519	1.27	1.12
13	NT	NT		
14	2.6	1.3	-0.29	-0.12
15	2.39	0.27	-0.67	-0.84
16	<4	NR		
18**	24.5	2.1	39.38	10.21

** Gross Error, see Section 4.2

Assigned Value	2.76	0.35
Spike Value	2.26	0.40
Homogeneity Value	2.41	0.29
Robust Average	2.76	0.35
Median	2.74	0.27
Mean	2.76	
Ν	12	
Мах	3.72	
Min	1.8	
Robust SD	0.49	
Robust CV	18%	

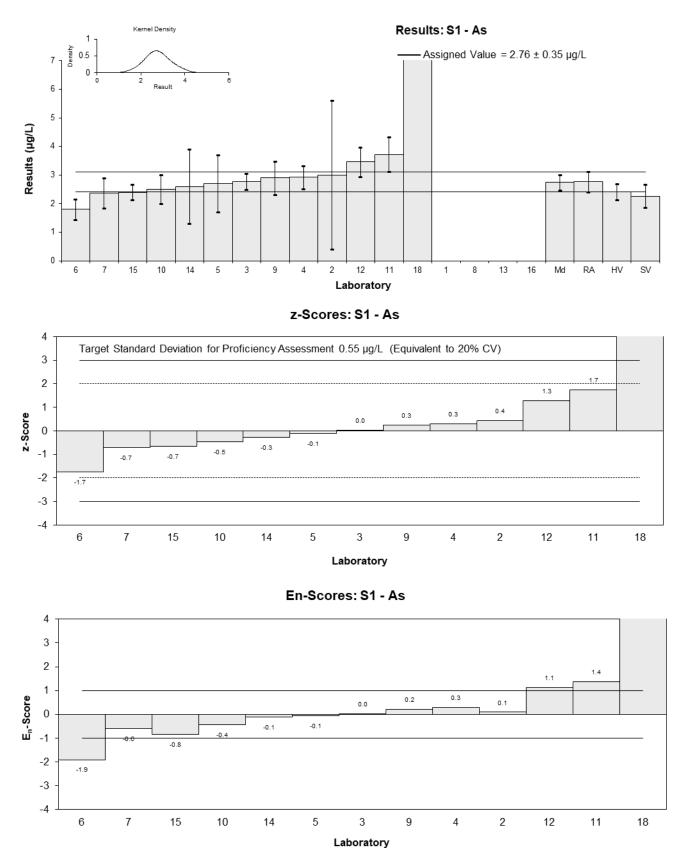
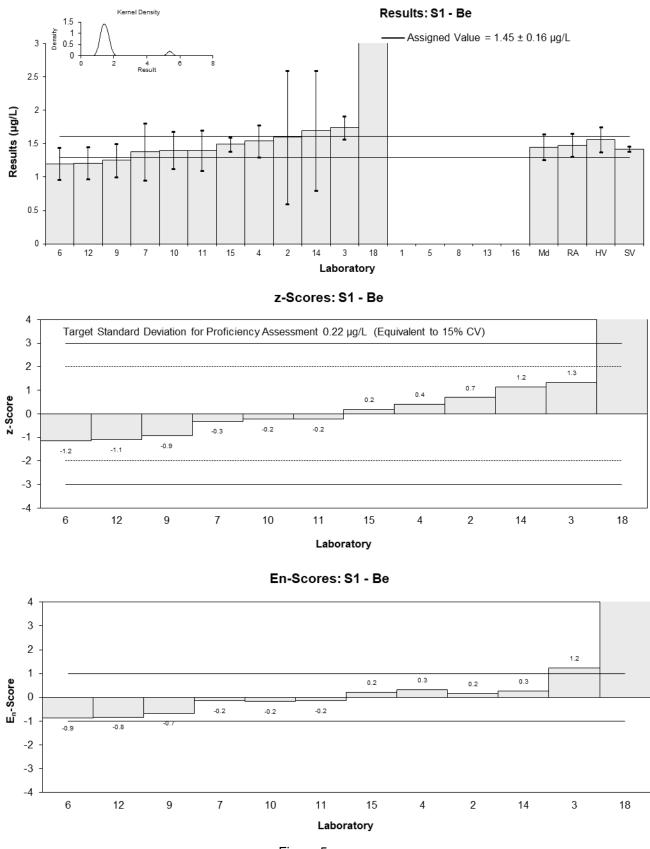


Figure 4


Sample No.	S1
Matrix	Sea Water
Analyte	Be
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<5	NR		
2	1.6	1.0	0.69	0.15
3	1.74	0.17	1.33	1.24
4	1.54	0.24	0.41	0.31
5	NR	NR		
6	1.2	0.24	-1.15	-0.87
7	1.38	0.43	-0.32	-0.15
8	NT	NT		
9	1.25	0.25	-0.92	-0.67
10	1.4	0.28	-0.23	-0.16
11	1.4	0.30	-0.23	-0.15
12	1.21	0.242	-1.10	-0.83
13	NT	NT		
14	1.7	0.9	1.15	0.27
15	1.49	0.11	0.18	0.21
16	NT	NT		
18*	5.39	0.16	18.11	17.41

* Outlier, see Section 4.2

Assigned Value	1.45	0.16
Spike Value	1.42	0.04
Homogeneity Value	1.56	0.19
Robust Average	1.48	0.17
Median	1.45	0.19
Mean	1.78	
Ν	12	
Мах	5.39	
Min	1.2	
Robust SD	0.24	
Robust CV	16%	

Sample No.	S1
Matrix	Sea Water
Analyte	Cd
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1**	8	0.77	61.36	9.34
2	0.95	0.43	1.41	0.38
3	0.84	0.08	0.48	0.54
4	0.782	0.102	-0.02	-0.02
5	NR	NR		
6	0.72	0.14	-0.54	-0.41
7	0.67	0.16	-0.97	-0.66
8	NT	NT		
9	0.724	0.145	-0.51	-0.38
10	0.75	0.15	-0.29	-0.21
11	0.83	0.15	0.39	0.28
12	0.69	0.069	-0.80	-0.98
13	NT	NT		
14	0.81	0.2	0.22	0.12
15	0.91	0.16	1.07	0.73
16	0.76	0.21	-0.20	-0.11
18	NT	NT		

** Gross Error, see Section 4.2

Assigned Value	0.784	0.066
Spike Value	0.750	0.020
Homogeneity Value	0.762	0.091
Robust Average	0.784	0.066
Median	0.771	0.059
Mean	0.786	
Ν	12	
Мах	0.95	
Min	0.67	
Robust SD	0.092	
Robust CV	12%	

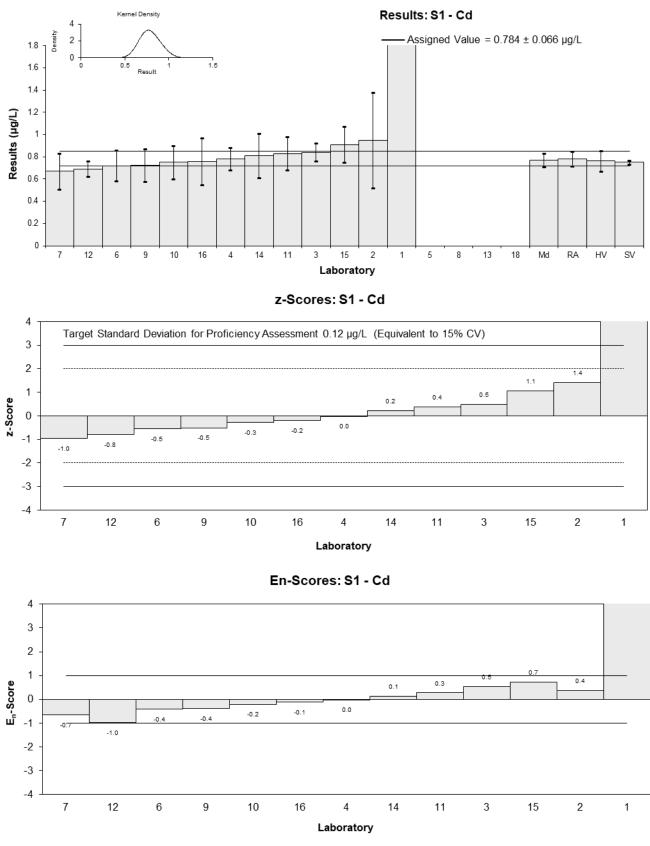


Figure 6

Sample No.	S1
Matrix	Sea Water
Analyte	Cr
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	<5	NR		
2	2.0	1.0	0.39	0.11
3	1.89	0.19	0.00	0.00
4	1.88	0.29	-0.04	-0.03
5	NR	NR		
6	1.8	0.36	-0.32	-0.24
7	1.93	0.50	0.14	0.08
8	NT	NT		
9	1.75	0.35	-0.49	-0.39
10	1.9	0.38	0.04	0.03
11	1.95	0.30	0.21	0.19
12	1.3	0.195	-2.08	-2.75
13	NT	NT		
14	1.8	0.9	-0.32	-0.10
15	1.98	0.14	0.32	0.54
16	2.17	0.76	0.99	0.37
18*	5.5	2.0	12.73	1.80

* Outlier, see Section 4.2

Assigned Value	1.89	0.09
Spike Value	1.99	0.07
Homogeneity Value	1.92	0.23
Robust Average	1.91	0.11
Median	1.90	0.10
Mean	2.14	
Ν	13	
Мах	5.5	
Min	1.3	
Robust SD	0.16	
Robust CV	8.4%	

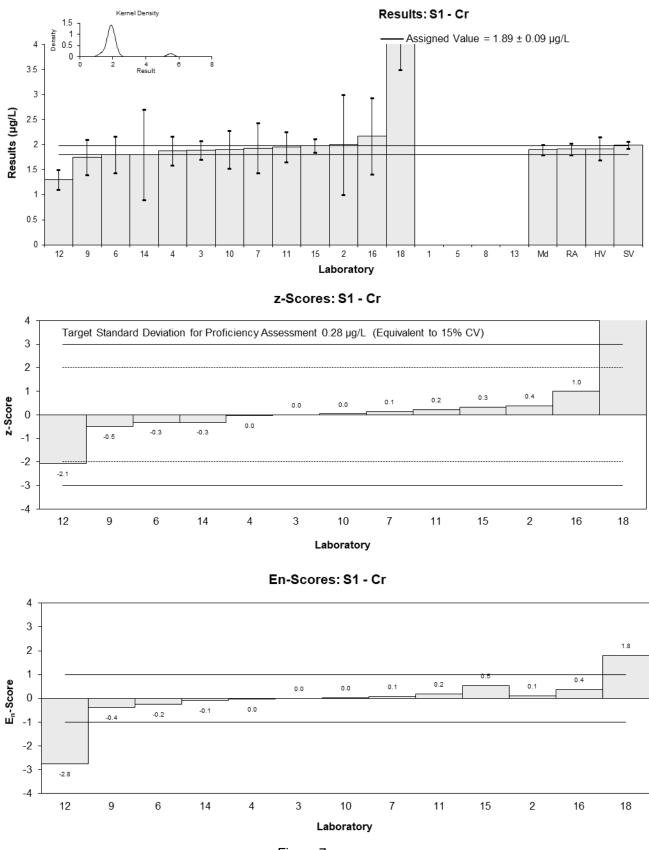


Figure 7

19

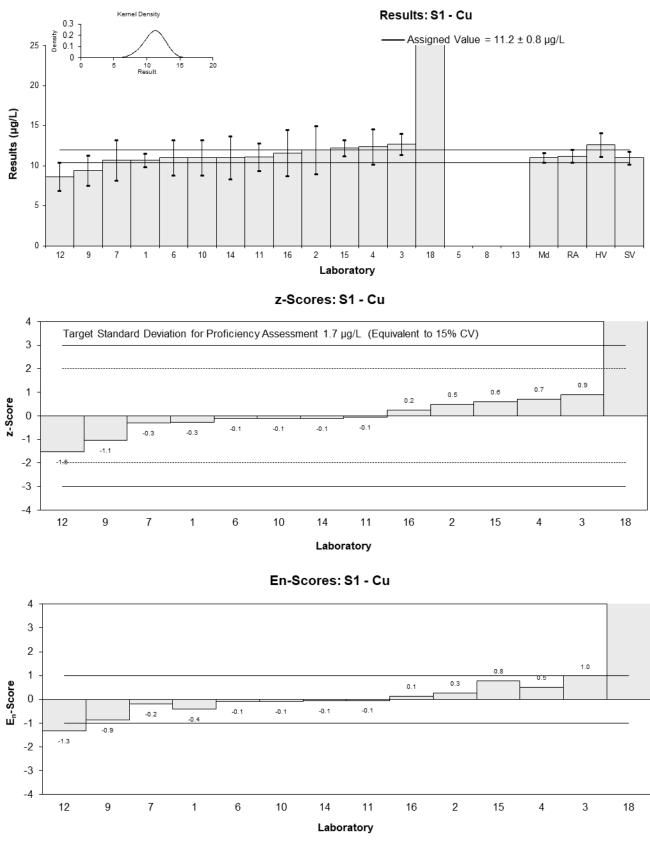
Sample No.	S1
Matrix	Sea Water
Analyte	Cu
Unit	μg/L

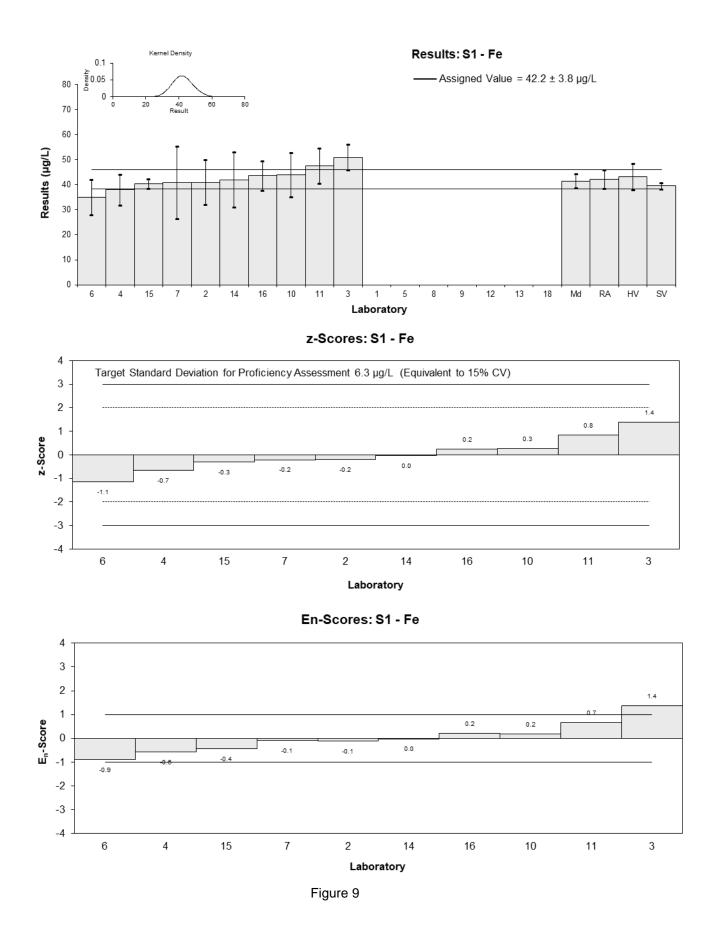
Participant Results

Lab. Code	Result	Uncertainty	z	En
1	10.72	0.85	-0.29	-0.41
2	12	3	0.48	0.26
3	12.7	1.30	0.89	0.98
4	12.4	2.2	0.71	0.51
5	NR	NR		
6	11	2.2	-0.12	-0.09
7	10.7	2.5	-0.30	-0.19
8	NT	NT		
9	9.44	1.89	-1.05	-0.86
10	11	2.2	-0.12	-0.09
11	11.1	1.7	-0.06	-0.05
12	8.65	1.73	-1.52	-1.34
13	NT	NT		
14	11	2.7	-0.12	-0.07
15	12.2	1.02	0.60	0.77
16	11.6	2.9	0.24	0.13
18**	140	19	76.67	6.77

** Gross Error, see Section 4.2

Assigned Value	11.2	0.8
Spike Value	11.0	0.8
Homogeneity Value	12.6	1.5
Robust Average	11.2	0.8
Median	11.0	0.6
Mean	11.1	
Ν	13	
Мах	12.7	
Min	8.65	
Robust SD	1.1	
Robust CV	10%	




Figure 8

Sample No.	S1
Matrix	Sea Water
Analyte	Fe
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<50	NR		
2	41	9	-0.19	-0.12
3	51	5.1	1.39	1.38
4	38.0	6.1	-0.66	-0.58
5	NR	NR		
6	35	7.0	-1.14	-0.90
7	40.9	14.5	-0.21	-0.09
8	NT	NT		
9	< 50	10		
10	44	8.8	0.28	0.19
11	47.5	7.1	0.84	0.66
12	<50	<15		
13	NT	NT		
14	42	11	-0.03	-0.02
15	40.3	1.97	-0.30	-0.44
16	43.7	5.9	0.24	0.21
18	NT	NT		

Assigned Value	42.2	3.8
Spike Value	39.5	1.2
Homogeneity Value	43.2	5.2
Robust Average	42.2	3.8
Median	41.5	2.8
Mean	42.3	
N	10	
Мах	51	
Min	35	
Robust SD	4.8	
Robust CV	11%	

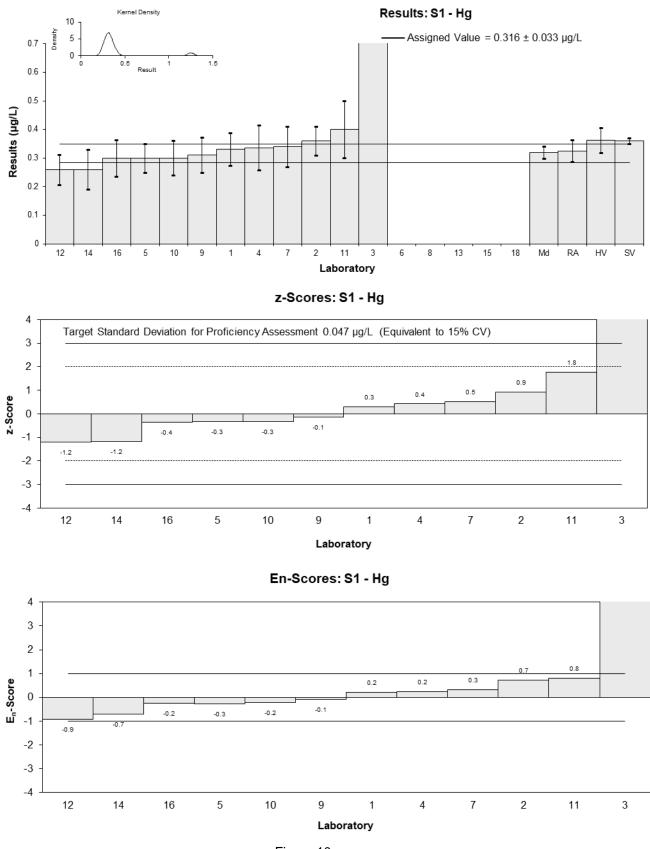
Sample No.	S1
Matrix	Sea Water
Analyte	Hg
Unit	μg/L

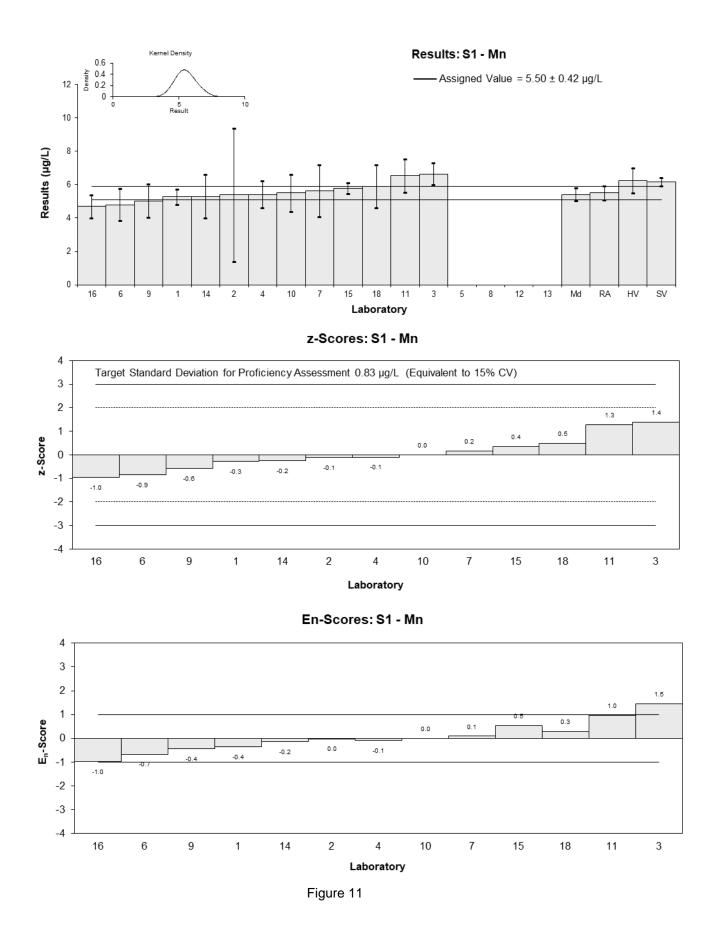
Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	0.33	0.057	0.30	0.21
2	0.36	0.05	0.93	0.73
3*	1.25	0.13	19.70	6.96
4	0.336	0.078	0.42	0.24
5	0.3	0.05	-0.34	-0.27
6	<0.5	NR		
7	0.34	0.07	0.51	0.31
8	NT	NT		
9	0.31	0.062	-0.13	-0.09
10	0.30	0.06	-0.34	-0.23
11	0.4	0.10	1.77	0.80
12	0.259	0.0518	-1.20	-0.93
13	NT	NT		
14	0.26	0.07	-1.18	-0.72
15	NR	NR		
16	0.299	0.064	-0.36	-0.24
18	NT	NT		

* Outlier, see Section 4.2

Assigned Value	0.316	0.033
Spike Value	0.360	0.010
Homogeneity Value	0.363	0.044
Robust Average	0.325	0.038
Median	0.320	0.022
Mean	0.395	
Ν	12	
Max	1.25	
Min	0.259	
Robust SD	0.053	
Robust CV	16%	



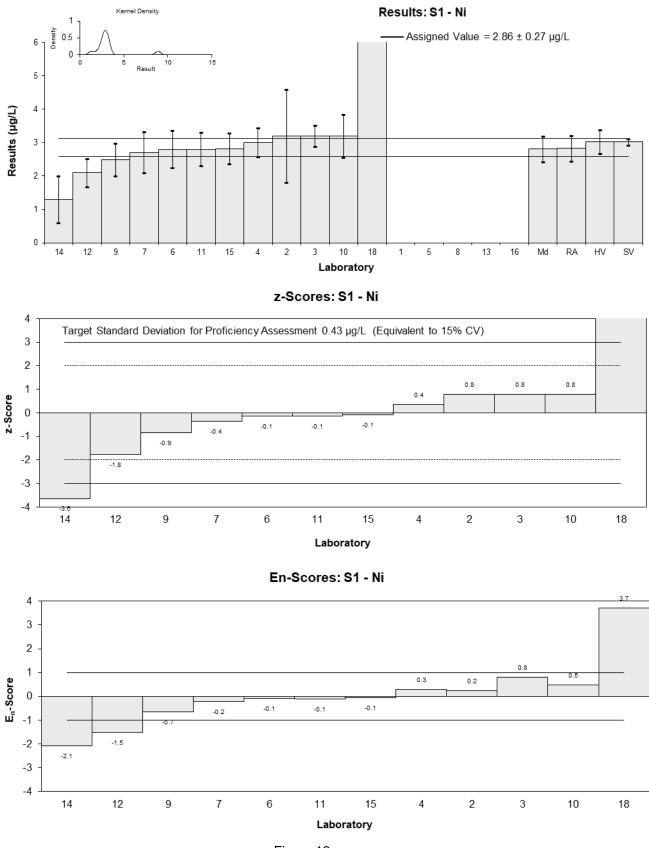

Figure 10

Sample No.	S1
Matrix	Sea Water
Analyte	Mn
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	5.28	0.46	-0.27	-0.35
2	5.4	4.0	-0.12	-0.02
3	6.64	0.66	1.38	1.46
4	5.42	0.82	-0.10	-0.09
5	NR	NR		
6	4.8	0.96	-0.85	-0.67
7	5.64	1.55	0.17	0.09
8	NT	NT		
9	5.02	1.00	-0.58	-0.44
10	5.5	1.1	0.00	0.00
11	6.55	1.0	1.27	0.97
12	<5	<1.5		
13	NT	NT		
14	5.3	1.3	-0.24	-0.15
15	5.79	0.34	0.35	0.54
16	4.70	0.70	-0.97	-0.98
18	5.9	1.3	0.48	0.29

Assigned Value	5.50	0.42
Spike Value	6.17	0.24
Homogeneity Value	6.24	0.75
Robust Average	5.50	0.42
Median	5.42	0.38
Mean	5.53	
N	13	
Мах	6.64	
Min	4.7	
Robust SD	0.60	
Robust CV	11%	


Sample No.	S1
Matrix	Sea Water
Analyte	Ni
Unit	μg/L

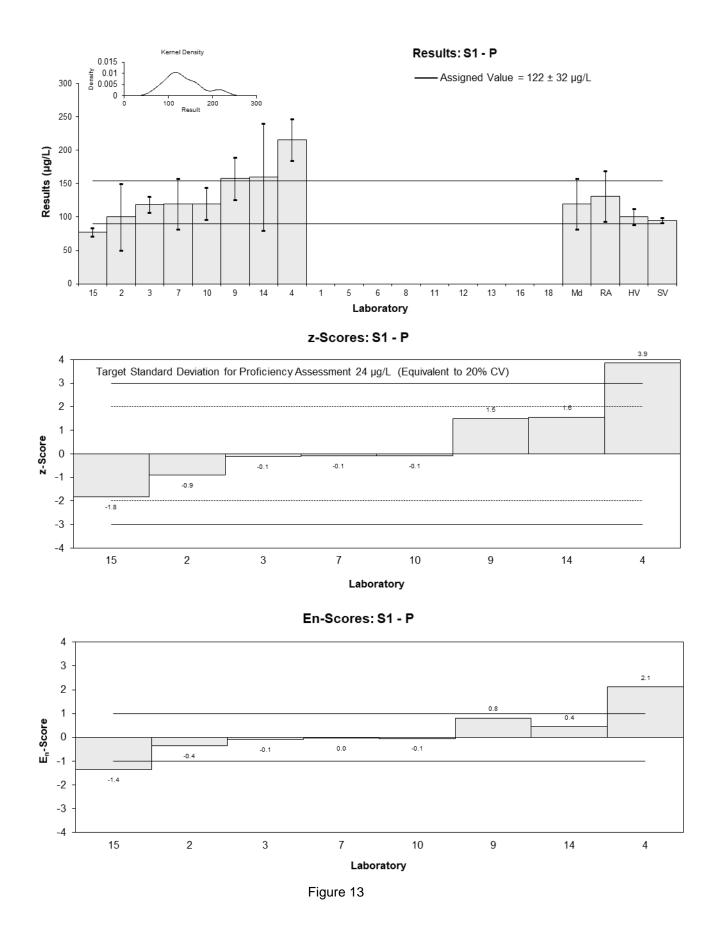
Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<5	NR		
2	3.2	1.4	0.79	0.24
3	3.2	0.32	0.79	0.81
4	3.01	0.43	0.35	0.30
5	NR	NR		
6	2.8	0.56	-0.14	-0.10
7	2.71	0.61	-0.35	-0.22
8	NT	NT		
9	2.49	0.498	-0.86	-0.65
10	3.2	0.64	0.79	0.49
11	2.8	0.50	-0.14	-0.11
12	2.1	0.42	-1.77	-1.52
13	NT	NT		
14*	1.3	0.7	-3.64	-2.08
15	2.82	0.46	-0.09	-0.07
16	<7	NR		
18*	8.9	1.6	14.08	3.72

* Outlier, see Section 4.2

Assigned Value	2.86	0.27
Spike Value	3.02	0.10
Homogeneity Value	3.03	0.36
Robust Average	2.83	0.38
Median	2.81	0.38
Mean	3.21	
Ν	12	
Мах	8.9	
Min	1.3	
Robust SD	0.52	
Robust CV	18%	

29


Sample No.	S1
Matrix	Sea Water
Analyte	Р
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<1000	NR		
2	100	50	-0.90	-0.37
3	119	12	-0.12	-0.09
4*	216	31	3.85	2.11
5	NT	NT		
6	NT	NT		
7	120	38	-0.08	-0.04
8	NT	NT		
9	158	31.6	1.48	0.80
10	120	24	-0.08	-0.05
11	NT	NT		
12	NT	NT		
13	NT	NT		
14	160	80	1.56	0.44
15	77.6	6.3	-1.82	-1.36
16	NT	NT		
18	NT	NT		

* Outlier, see Section 4.2

Assigned Value	122	32
Spike Value	95.0	3.6
Homogeneity Value	100	12
Robust Average	131	38
Median	120	38
Mean	134	
Ν	8	
Мах	216	
Min	77.6	
Robust SD	43	
Robust CV	32%	

Sample No.	S1
Matrix	Sea Water
Analyte	Pb
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<5	NR		
2	1.7	1.3	0.65	0.11
3	1.80	0.18	1.08	1.01
4	1.53	0.31	-0.09	-0.06
5	NR	NR		
6	1.4	0.28	-0.65	-0.46
7	1.85	0.41	1.29	0.68
8	NT	NT		
9	1.25	0.25	-1.29	-0.99
10	1.5	0.30	-0.22	-0.15
11	1.5	0.30	-0.22	-0.15
12	1.24	0.186	-1.33	-1.23
13	NT	NT		
14	1.8	0.9	1.08	0.27
15	1.46	0.09	-0.39	-0.47
16	1.52	0.73	-0.13	-0.04
18*	4.7	0.6	13.55	5.05

* Outlier, see Section 4.2

Assigned Value	1.55	0.17
Spike Value	1.51	0.04
Homogeneity Value	1.58	0.20
Robust Average	1.58	0.18
Median	1.52	0.19
Mean	1.79	
Ν	13	
Мах	4.7	
Min	1.24	
Robust SD	0.26	
Robust CV	16%	

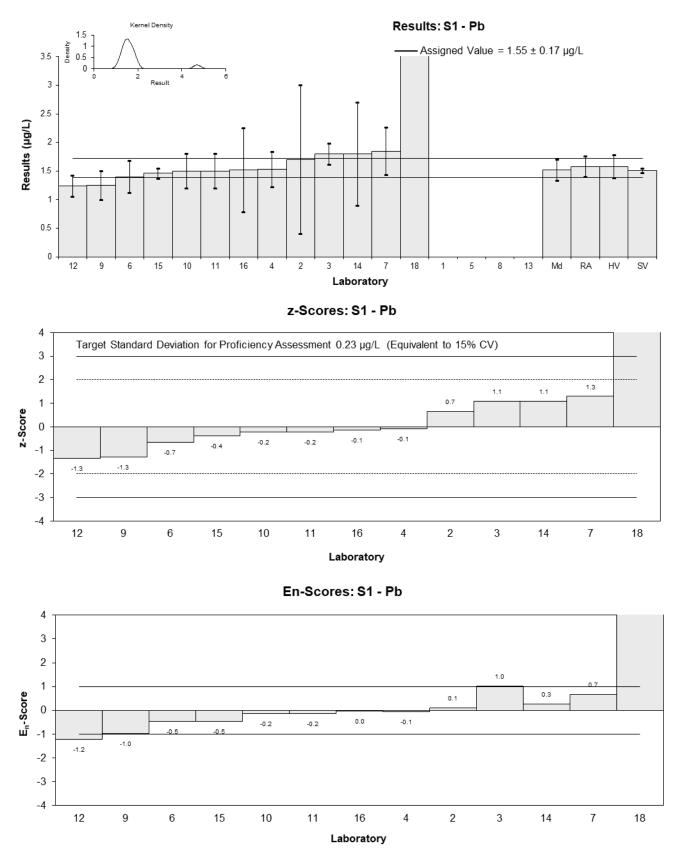
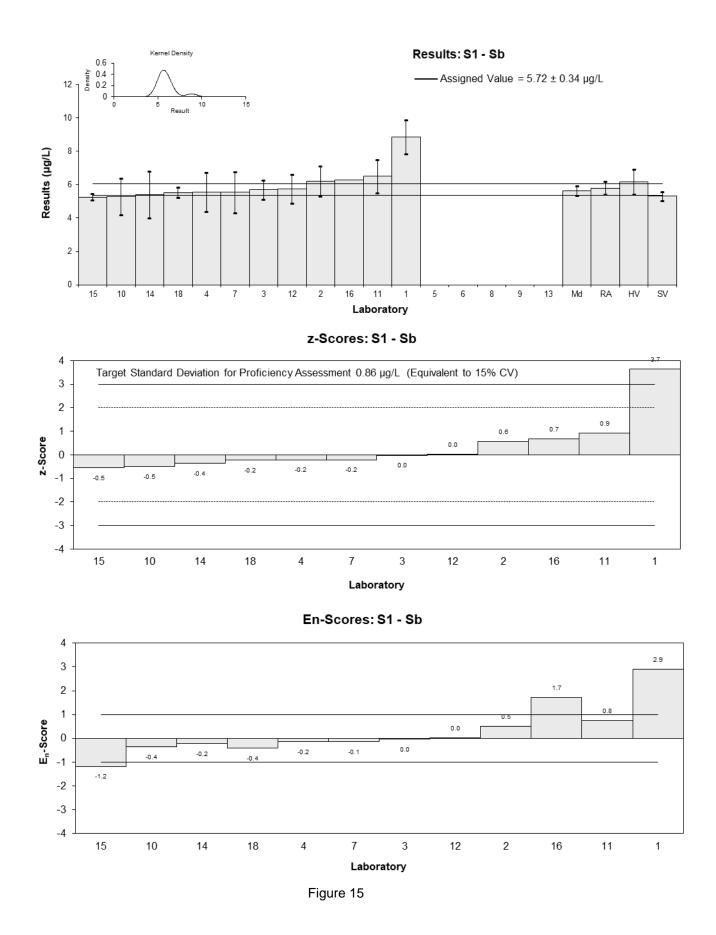


Figure 14


Sample No.	S1
Matrix	Sea Water
Analyte	Sb
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1*	8.85	1.02	3.65	2.91
2	6.2	0.9	0.56	0.50
3	5.70	0.57	-0.02	-0.03
4	5.54	1.17	-0.21	-0.15
5	NR	NR		
6	NT	NT		
7	5.54	1.22	-0.21	-0.14
8	NT	NT		
9	< 5	1		
10	5.3	1.1	-0.49	-0.36
11	6.51	1.0	0.92	0.75
12	5.74	0.861	0.02	0.02
13	NT	NT		
14	5.4	1.4	-0.37	-0.22
15	5.26	0.19	-0.54	-1.18
16	6.3	NR	0.68	1.71
18	5.53	0.31	-0.22	-0.41

* Outlier, see Section 4.2

Assigned Value	5.72	0.34
Spike Value	5.32	0.27
Homogeneity Value	6.17	0.74
Robust Average	5.80	0.39
Median	5.62	0.29
Mean	5.99	
Ν	12	
Мах	8.85	
Min	5.26	
Robust SD	0.54	
Robust CV	9.3%	

AQA 22-17 Trace Elements in Sea Water and River Water

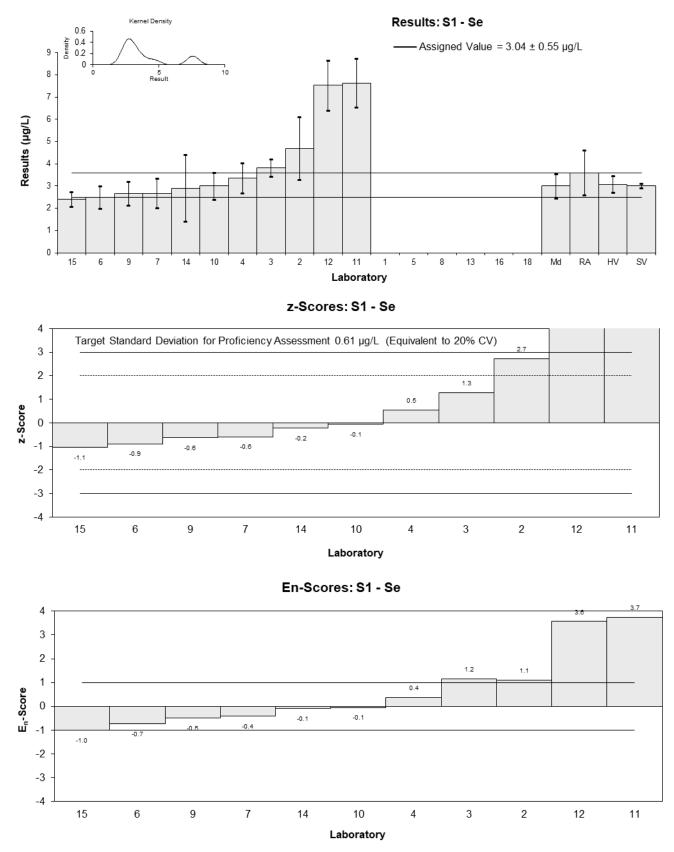
Sample No.	S1
Matrix	Sea Water
Analyte	Se
Unit	μg/L

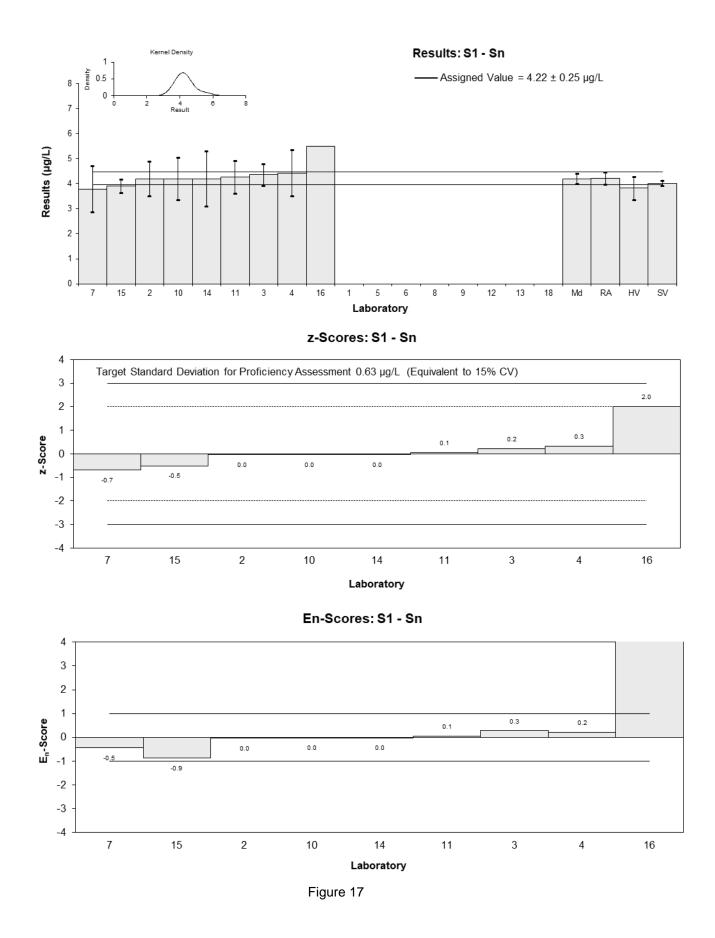
Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	<50	NR		
2	4.7	1.4	2.73	1.10
3	3.82	0.40	1.28	1.15
4	3.37	0.68	0.54	0.38
5	NR	NR		
6	2.5	0.50	-0.89	-0.73
7	2.68	0.66	-0.59	-0.42
8	NT	NT		
9	2.66	0.532	-0.62	-0.50
10	3.0	0.60	-0.07	-0.05
11*	7.64	1.1	7.57	3.74
12*	7.53	1.1295	7.38	3.57
13	NT	NT		
14	2.9	1.5	-0.23	-0.09
15	2.40	0.33	-1.05	-1.00
16	<4	2.7		
18	NT	NT		

* Outlier, see Section 4.2

Assigned Value	3.04	0.55
Spike Value	3.01	0.10
Homogeneity Value	3.08	0.37
Robust Average	3.6	1.0
Median	3.00	0.56
Mean	3.9	
Ν	11	
Мах	7.64	
Min	2.4	
Robust SD	1.4	
Robust CV	39%	



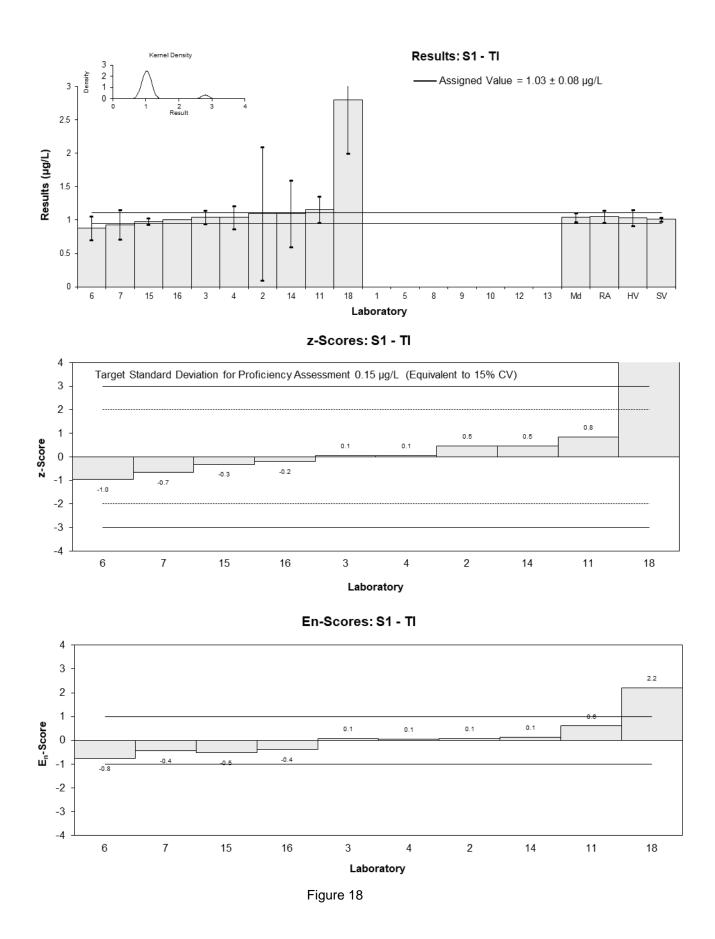

Figure 16

Sample No.	S1
Matrix	Sea Water
Analyte	Sn
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<5	NR		
2	4.2	0.7	-0.03	-0.03
3	4.36	0.44	0.22	0.28
4	4.43	0.93	0.33	0.22
5	NR	NR		
6	NT	NT		
7	3.79	0.93	-0.68	-0.45
8	NT	NT		
9	< 5	1		
10	4.2	0.84	-0.03	-0.02
11	4.26	0.65	0.06	0.06
12	<5	<1.5		
13	NT	NT		
14	4.2	1.1	-0.03	-0.02
15	3.90	0.27	-0.51	-0.87
16	5.5	NR	2.02	5.12
18	NT	NT		

Assigned Value	4.22	0.25
Spike Value	4.02	0.11
Homogeneity Value	3.82	0.46
Robust Average	4.22	0.25
Median	4.20	0.20
Mean	4.32	
N	9	
Мах	5.5	
Min	3.79	
Robust SD	0.30	
Robust CV	7.1%	

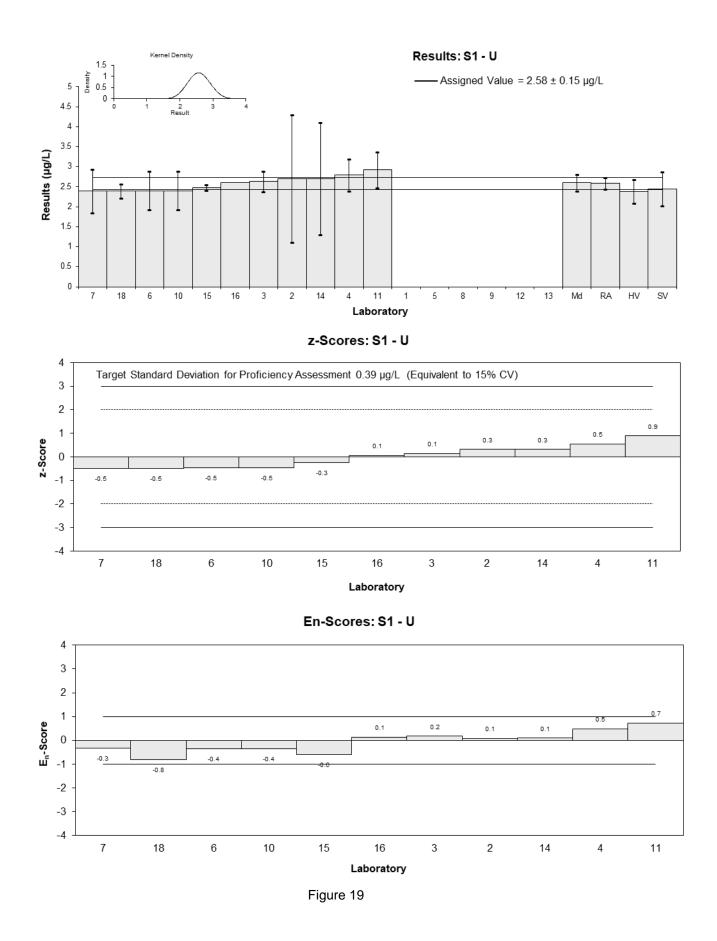

Sample No.	S1
Matrix	Sea Water
Analyte	ТІ
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<5	NR		
2	1.1	1.0	0.45	0.07
3	1.04	0.10	0.06	0.08
4	1.04	0.17	0.06	0.05
5	NR	NR		
6	0.88	0.18	-0.97	-0.76
7	0.93	0.22	-0.65	-0.43
8	NT	NT		
9	< 5	1		
10	<1	NR		
11	1.16	0.20	0.84	0.60
12	<5	<1.5		
13	NT	NT		
14	1.1	0.5	0.45	0.14
15	0.98	0.05	-0.32	-0.53
16	1.0	NR	-0.19	-0.38
18*	2.8	0.8	11.46	2.20

* Outlier, see Section 4.2

Assigned Value	1.03	0.08
Spike Value	1.01	0.03
Homogeneity Value	1.03	0.12
Robust Average	1.05	0.09
Median	1.04	0.07
Mean	1.20	
Ν	10	
Мах	2.8	
Min	0.88	
Robust SD	0.12	
Robust CV	11%	

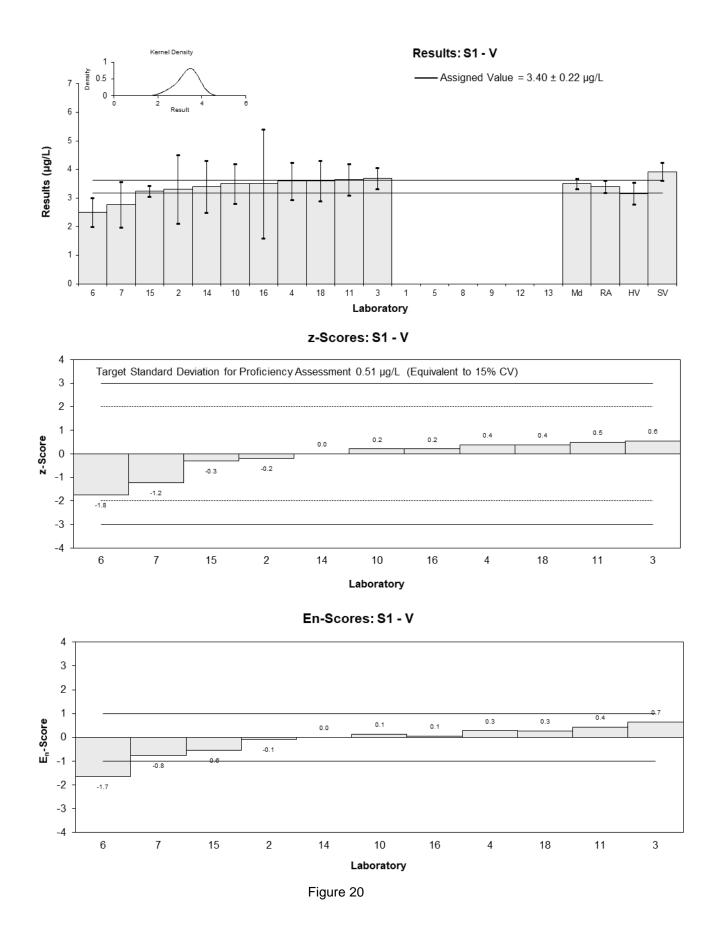


Sample No.	S1
Matrix	Sea Water
Analyte	U
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<5	NR		
2	2.7	1.6	0.31	0.07
3	2.63	0.26	0.13	0.17
4	2.79	0.40	0.54	0.49
5	NR	NR		
6	2.4	0.48	-0.47	-0.36
7	2.39	0.54	-0.49	-0.34
8	NT	NT		
9	< 5	1		
10	2.4	0.48	-0.47	-0.36
11	2.92	0.45	0.88	0.72
12	<5	<1.5		
13	NT	NT		
14	2.7	1.4	0.31	0.09
15	2.48	0.07	-0.26	-0.60
16	2.6	NR	0.05	0.13
18	2.39	0.18	-0.49	-0.81

Assigned Value	2.58	0.15
Spike Value	2.44	0.42
Homogeneity Value	2.38	0.29
Robust Average	2.58	0.15
Median	2.60	0.21
Mean	2.58	
N	11	
Мах	2.92	
Min	2.39	
Robust SD	0.20	
Robust CV	7.8%	



Sample No.	S1
Matrix	Sea Water
Analyte	V
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<50	NR		
2	3.3	1.2	-0.20	-0.08
3	3.68	0.37	0.55	0.65
4	3.59	0.65	0.37	0.28
5	NR	NR		
6	2.5	0.50	-1.76	-1.65
7	2.77	0.79	-1.24	-0.77
8	NT	NT		
9	< 5	1		
10	3.5	0.70	0.20	0.14
11	3.65	0.55	0.49	0.42
12	<5	<1.5		
13	NT	NT		
14	3.4	0.9	0.00	0.00
15	3.24	0.19	-0.31	-0.55
16	3.5	1.9	0.20	0.05
18	3.6	0.7	0.39	0.27

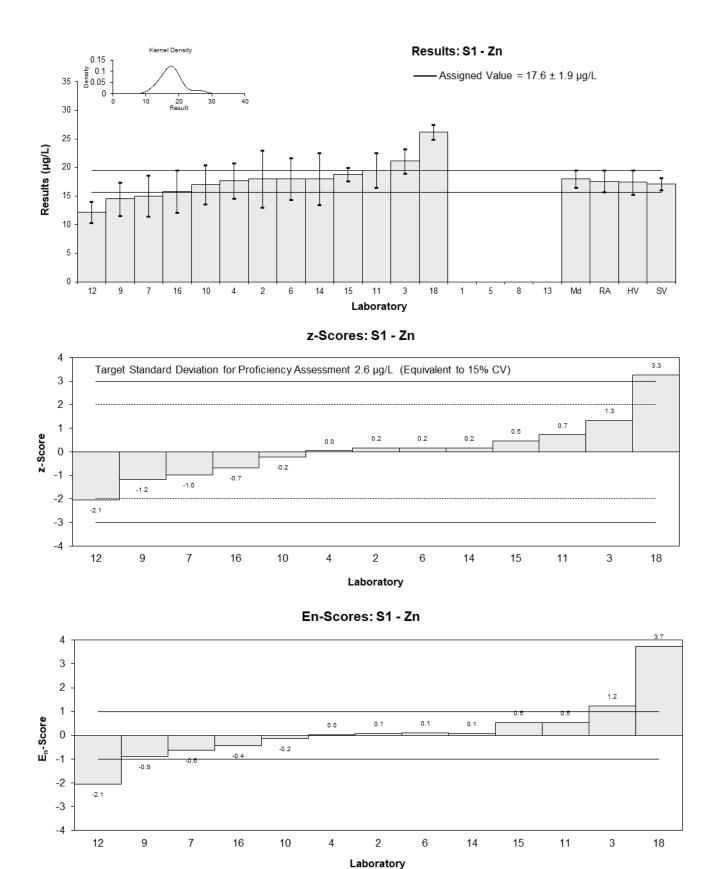
Assigned Value	3.40	0.22
Spike Value	3.92	0.31
Homogeneity Value	3.16	0.38
Robust Average	3.40	0.22
Median	3.50	0.17
Mean	3.34	
Ν	11	
Мах	3.68	
Min	2.5	
Robust SD	0.29	
Robust CV	8.5%	

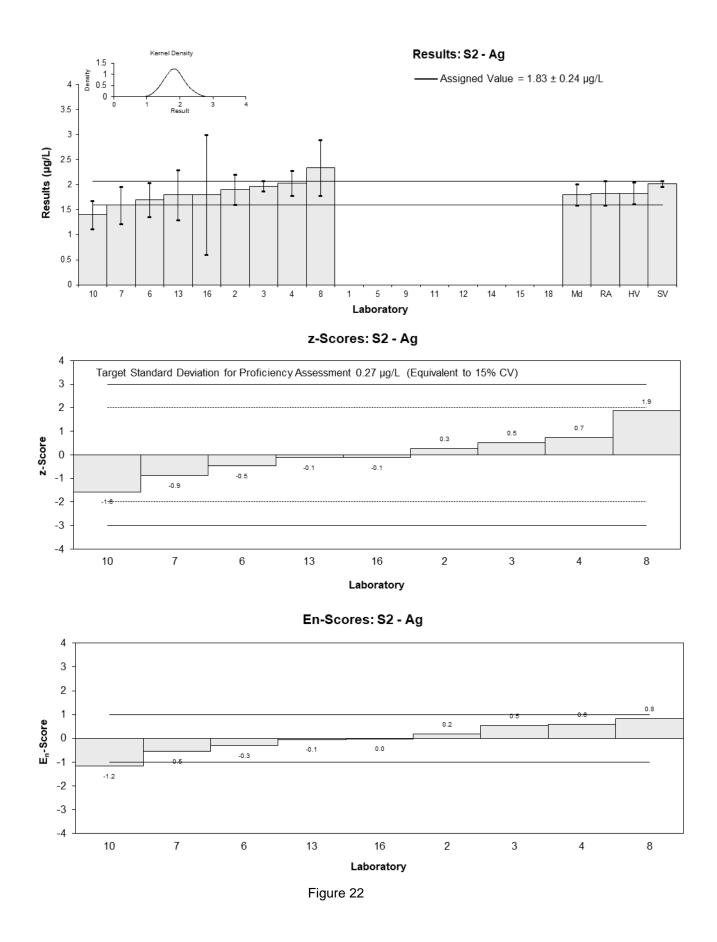
Sample No.	S1
Matrix	Sea Water
Analyte	Zn
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<25	NR		
2	18	5	0.15	0.07
3	21.1	2.1	1.33	1.24
4	17.7	3.1	0.04	0.03
5	NR	NR		
6	18	3.6	0.15	0.10
7	15.0	3.6	-0.98	-0.64
8	NT	NT		
9	14.5	2.90	-1.17	-0.89
10	17	3.4	-0.23	-0.15
11	19.5	3.0	0.72	0.54
12	12.2	1.83	-2.05	-2.05
13	NT	NT		
14	18	4.5	0.15	0.08
15	18.8	1.20	0.45	0.53
16	15.8	3.7	-0.68	-0.43
18	26.2	1.3	3.26	3.74

Assigned Value	17.6	1.9
Spike Value	17.1	1.1
Homogeneity Value	17.4	2.1
Robust Average	17.6	1.9
Median	18.0	1.5
Mean	17.8	
N	13	
Мах	26.2	
Min	12.2	
Robust SD	2.8	
Robust CV	16%	



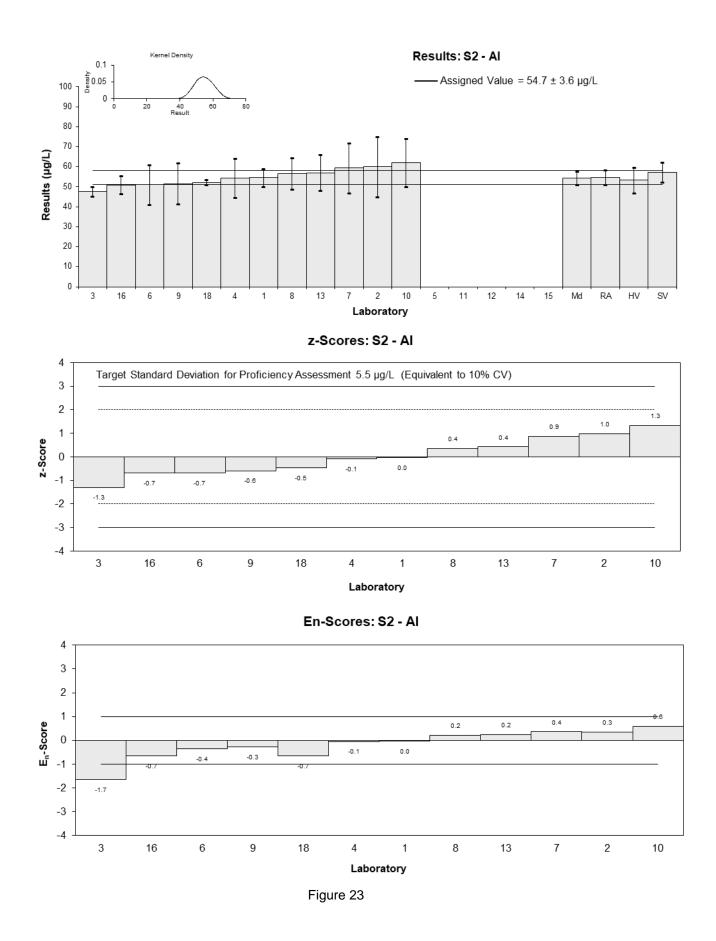

Figure 21

Sample No.	S2
Matrix	River Water
Analyte	Ag
Unit	µg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<1	NR		
2	1.9	0.3	0.26	0.18
3	1.97	0.10	0.51	0.54
4	2.03	0.25	0.73	0.58
5	NT	NT		
6	1.7	0.34	-0.47	-0.31
7	1.59	0.37	-0.87	-0.54
8	2.34	0.56	1.86	0.84
9	< 5	1		
10	1.4	0.28	-1.57	-1.17
11	NT	NT		
12	<5	<1.5		
13	1.8	0.5	-0.11	-0.05
14	NT	NT		
15	NT	NT		
16	1.8	1.2	-0.11	-0.02
18	NT	NT		

Assigned Value	1.83	0.24
Spike Value	2.02	0.06
Homogeneity Value	1.83	0.22
Robust Average	1.83	0.24
Median	1.80	0.21
Mean	1.84	
Ν	9	
Мах	2.34	
Min	1.4	
Robust SD	0.28	
Robust CV	16%	

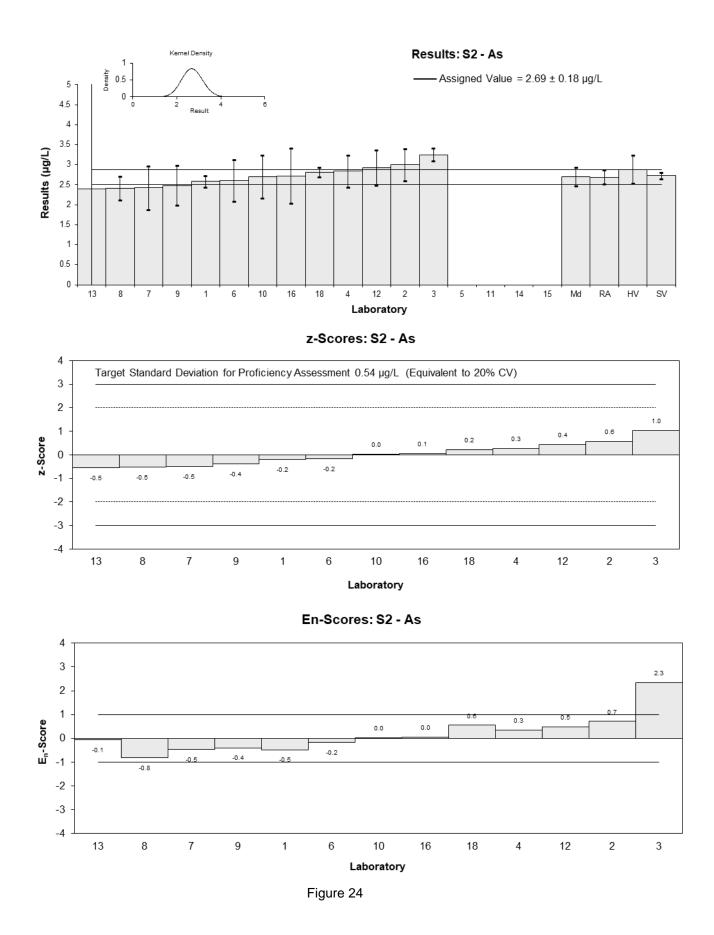


Sample No.	S2
Matrix	River Water
Analyte	AI
Unit	µg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	54.48	4.37	-0.04	-0.04
2	60	15	0.97	0.34
3	47.6	2.38	-1.30	-1.65
4	54.2	9.8	-0.09	-0.05
5	NT	NT		
6	51	10	-0.68	-0.35
7	59.4	12.5	0.86	0.36
8	56.61	7.9	0.35	0.22
9	51.5	10.3	-0.59	-0.29
10	62	12	1.33	0.58
11	NT	NT		
12	<50	<15		
13	57	9	0.42	0.24
14	NT	NT		
15	NT	NT		
16	50.9	4.5	-0.69	-0.66
18	52.2	1.2	-0.46	-0.66

Assigned Value	54.7	3.6
Spike Value	57.2	5.1
Homogeneity Value	53.2	6.4
Robust Average	54.7	3.6
Median	54.3	3.3
Mean	54.7	
N	12	
Мах	62	
Min	47.6	
Robust SD	4.9	
Robust CV	9%	

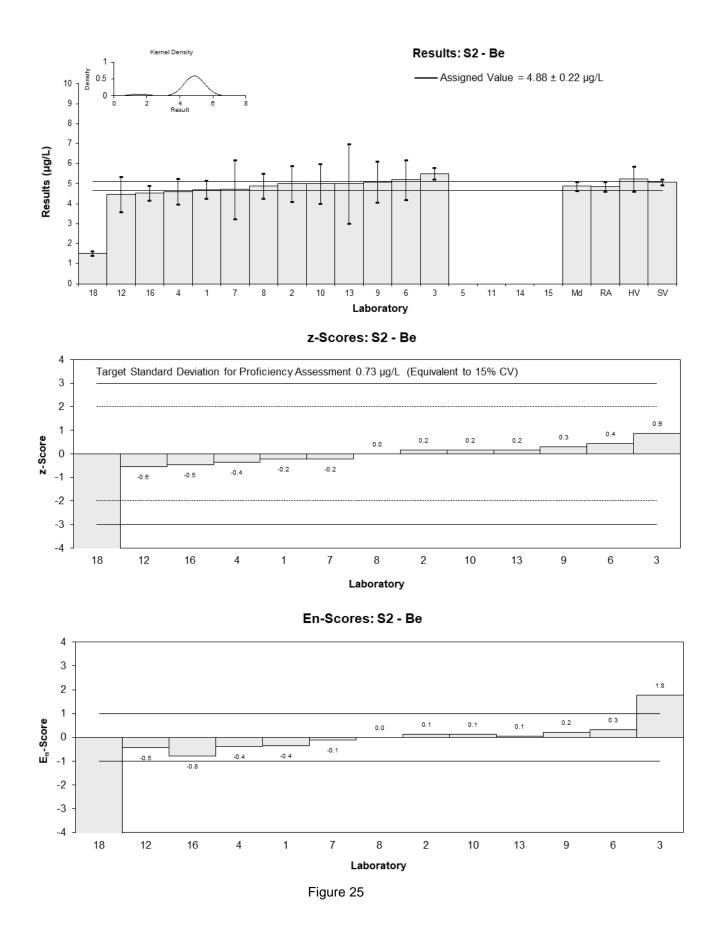


Sample No.	S2
Matrix	River Water
Analyte	As
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	2.58	0.14	-0.20	-0.48
2	3.0	0.4	0.58	0.71
3	3.25	0.16	1.04	2.33
4	2.84	0.40	0.28	0.34
5	NT	NT		
6	2.6	0.52	-0.17	-0.16
7	2.42	0.54	-0.50	-0.47
8	2.41	0.29	-0.52	-0.82
9	2.48	0.496	-0.39	-0.40
10	2.7	0.54	0.02	0.02
11	NT	NT		
12	2.92	0.438	0.43	0.49
13	2.4	5	-0.54	-0.06
14	NT	NT		
15	NT	NT		
16	2.72	0.69	0.06	0.04
18	2.81	0.12	0.22	0.55

Assigned Value	2.69	0.18
Spike Value	2.73	0.08
Homogeneity Value	2.88	0.35
Robust Average	2.69	0.18
Median	2.70	0.23
Mean	2.70	
Ν	13	
Мах	3.25	
Min	2.4	
Robust SD	0.26	
Robust CV	9.7%	

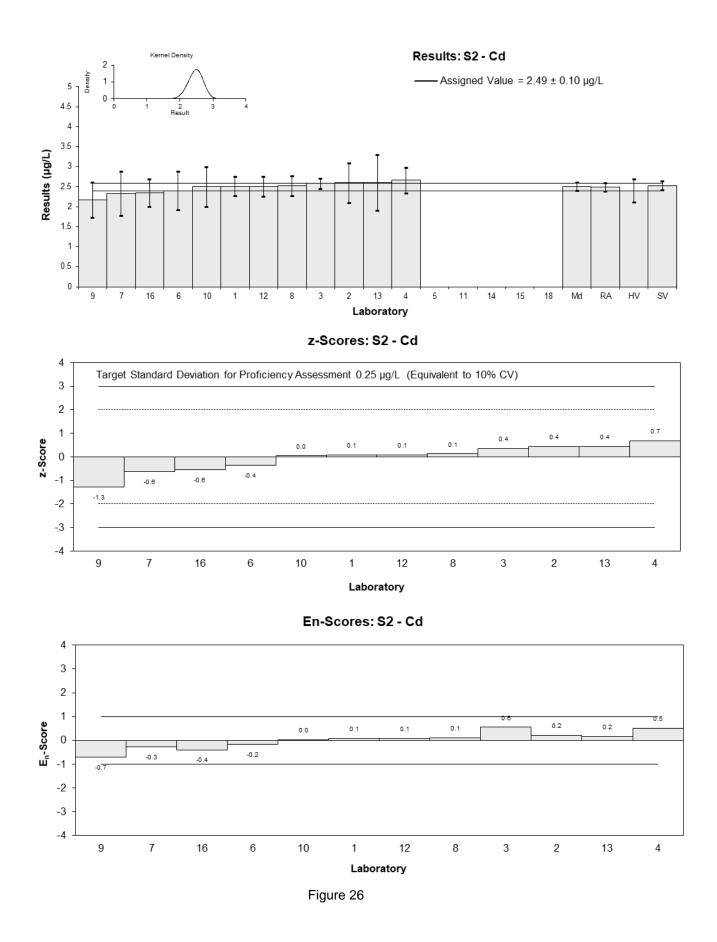

Sample No.	S2
Matrix	River Water
Analyte	Ве
Unit	µg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	4.71	0.44	-0.23	-0.35
2	5.0	0.9	0.16	0.13
3	5.51	0.28	0.86	1.77
4	4.61	0.65	-0.37	-0.39
5	NT	NT		
6	5.2	1.0	0.44	0.31
7	4.72	1.48	-0.22	-0.11
8	4.88	0.63	0.00	0.00
9	5.09	1.02	0.29	0.20
10	5.0	1.0	0.16	0.12
11	NT	NT		
12	4.47	0.894	-0.56	-0.45
13	5	2	0.16	0.06
14	NT	NT		
15	NT	NT		
16	4.54	0.37	-0.46	-0.79
18*	1.52	0.10	-4.59	-13.90

* Outlier, see Section 4.2

Assigned Value	4.88	0.22
Spike Value	5.08	0.14
Homogeneity Value	5.23	0.63
Robust Average	4.84	0.24
Median	4.88	0.22
Mean	4.63	
Ν	13	
Мах	5.51	
Min	1.52	
Robust SD	0.35	
Robust CV	7.2%	

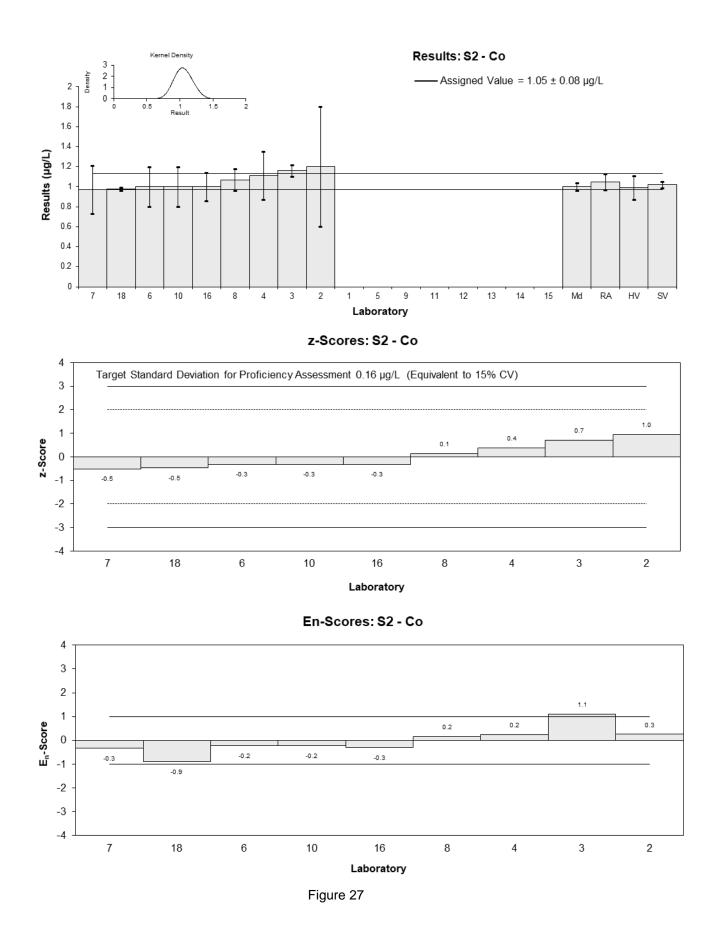


Sample No.	S2
Matrix	River Water
Analyte	Cd
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	2.51	0.24	0.08	0.08
2	2.6	0.5	0.44	0.22
3	2.58	0.13	0.36	0.55
4	2.66	0.32	0.68	0.51
5	NT	NT		
6	2.4	0.48	-0.36	-0.18
7	2.33	0.55	-0.64	-0.29
8	2.52	0.25	0.12	0.11
9	2.17	0.434	-1.29	-0.72
10	2.5	0.50	0.04	0.02
11	NT	NT		
12	2.51	0.251	0.08	0.07
13	2.6	0.7	0.44	0.16
14	NT	NT		
15	NT	NT		
16	2.35	0.34	-0.56	-0.40
18	NT	NT		

Assigned Value	2.49	0.10
Spike Value	2.53	0.11
Homogeneity Value	2.40	0.29
Robust Average	2.49	0.10
Median	2.51	0.10
Mean	2.48	
Ν	12	
Мах	2.66	
Min	2.17	
Robust SD	0.14	
Robust CV	5.5%	

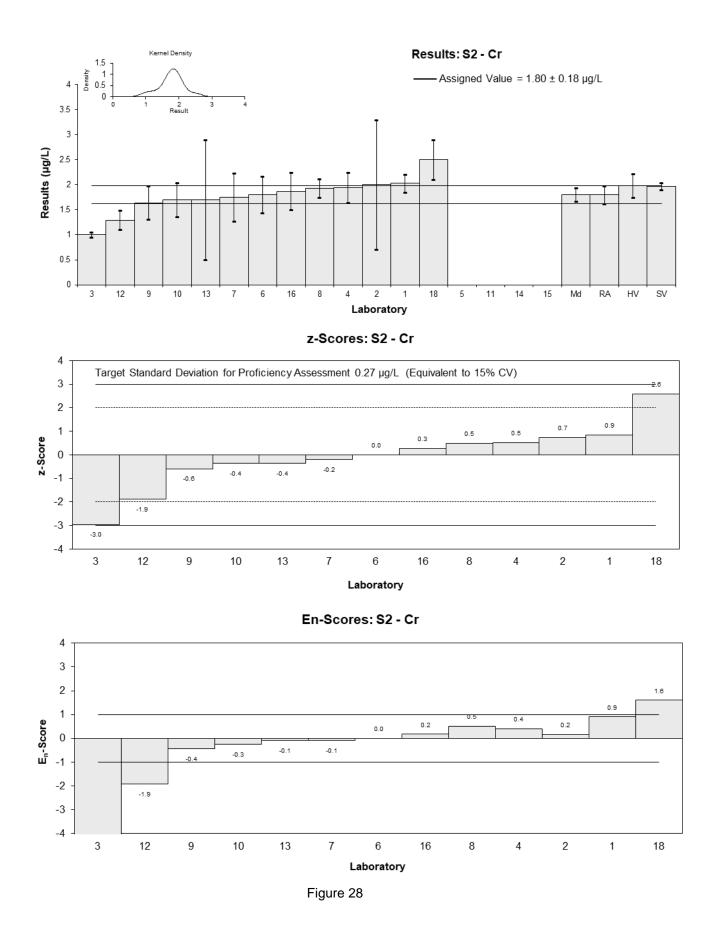


Sample No.	S2
Matrix	River Water
Analyte	Со
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<1	NR		
2	1.2	0.6	0.95	0.25
3	1.16	0.06	0.70	1.10
4	1.11	0.24	0.38	0.24
5	NT	NT		
6	1.0	0.20	-0.32	-0.23
7	0.97	0.24	-0.51	-0.32
8	1.07	0.11	0.13	0.15
9	< 1	0.2		
10	1.0	0.20	-0.32	-0.23
11	NT	NT		
12	<1	<0.3		
13	<1	1		
14	NT	NT		
15	NT	NT		
16	1.00	0.14	-0.32	-0.31
18	0.977	0.018	-0.46	-0.89

Assigned Value	1.05	0.08
Spike Value	1.02	0.03
Homogeneity Value	0.99	0.12
Robust Average	1.05	0.08
Median	1.00	0.04
Mean	1.05	
Ν	9	
Мах	1.2	
Min	0.97	
Robust SD	0.096	
Robust CV	9.1%	

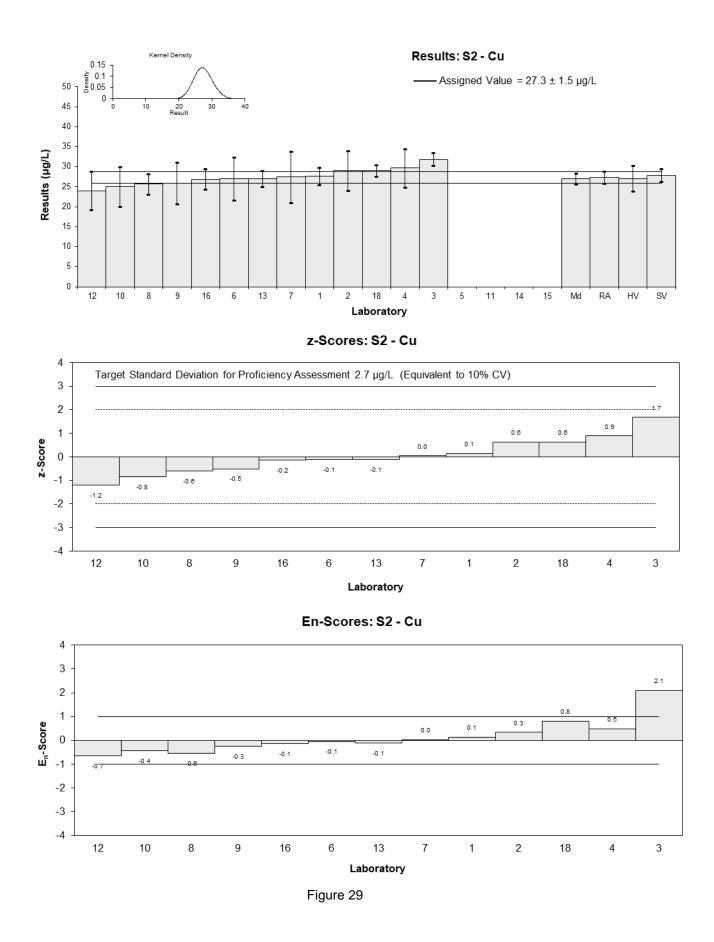


Sample No.	S2
Matrix	River Water
Analyte	Cr
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	2.03	0.18	0.85	0.90
2	2.0	1.3	0.74	0.15
3	1.00	0.05	-2.96	-4.28
4	1.94	0.30	0.52	0.40
5	NT	NT		
6	1.8	0.36	0.00	0.00
7	1.75	0.48	-0.19	-0.10
8	1.93	0.19	0.48	0.50
9	1.64	0.328	-0.59	-0.43
10	1.7	0.34	-0.37	-0.26
11	NT	NT		
12	1.29	0.1935	-1.89	-1.93
13	1.7	1.2	-0.37	-0.08
14	NT	NT		
15	NT	NT		
16	1.87	0.37	0.26	0.17
18	2.5	0.4	2.59	1.60

Assigned Value	1.80	0.18
Spike Value	1.97	0.07
Homogeneity Value	1.98	0.24
Robust Average	1.80	0.18
Median	1.80	0.14
Mean	1.78	
N	13	
Мах	2.5	
Min	1	
Robust SD	0.27	
Robust CV	15%	

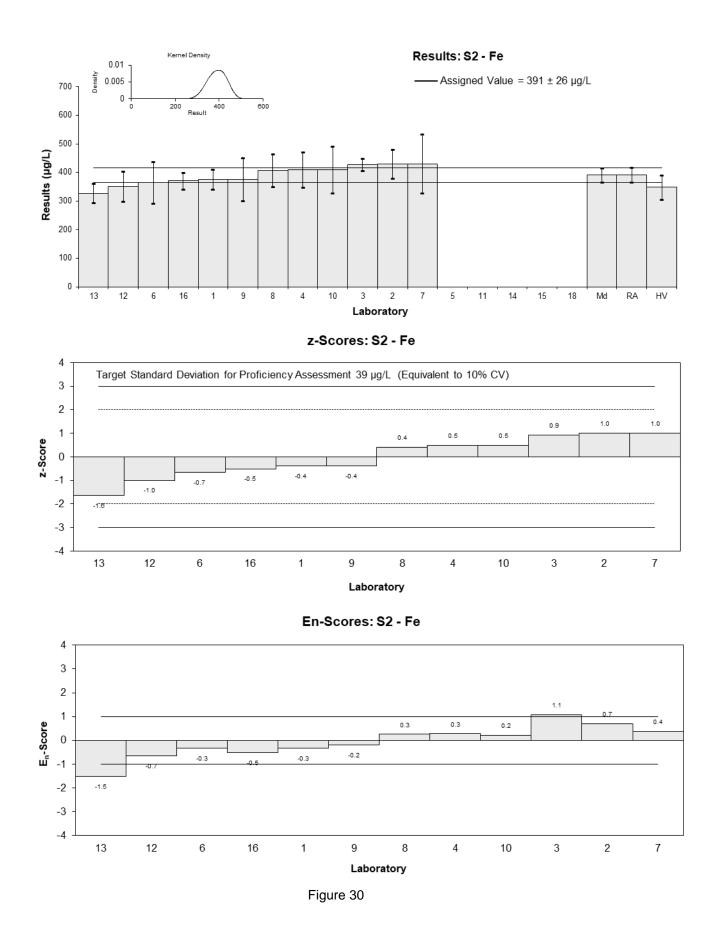


Sample No.	S2
Matrix	River Water
Analyte	Cu
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	27.68	2.19	0.14	0.14
2	29	5	0.62	0.33
3	31.86	1.59	1.67	2.09
4	29.7	4.8	0.88	0.48
5	NT	NT		
6	27	5.4	-0.11	-0.05
7	27.4	6.4	0.04	0.02
8	25.66	2.6	-0.60	-0.55
9	25.9	5.19	-0.51	-0.26
10	25	5.0	-0.84	-0.44
11	NT	NT		
12	24	4.8	-1.21	-0.66
13	27	2	-0.11	-0.12
14	NT	NT		
15	NT	NT		
16	26.9	2.5	-0.15	-0.14
18	29.0	1.5	0.62	0.80

Assigned Value	27.3	1.5
Spike Value	27.8	1.6
Homogeneity Value	27.0	3.2
Robust Average	27.3	1.5
Median	27.0	1.4
Mean	27.4	
N	13	
Мах	31.86	
Min	24	
Robust SD	2.1	
Robust CV	7.8%	

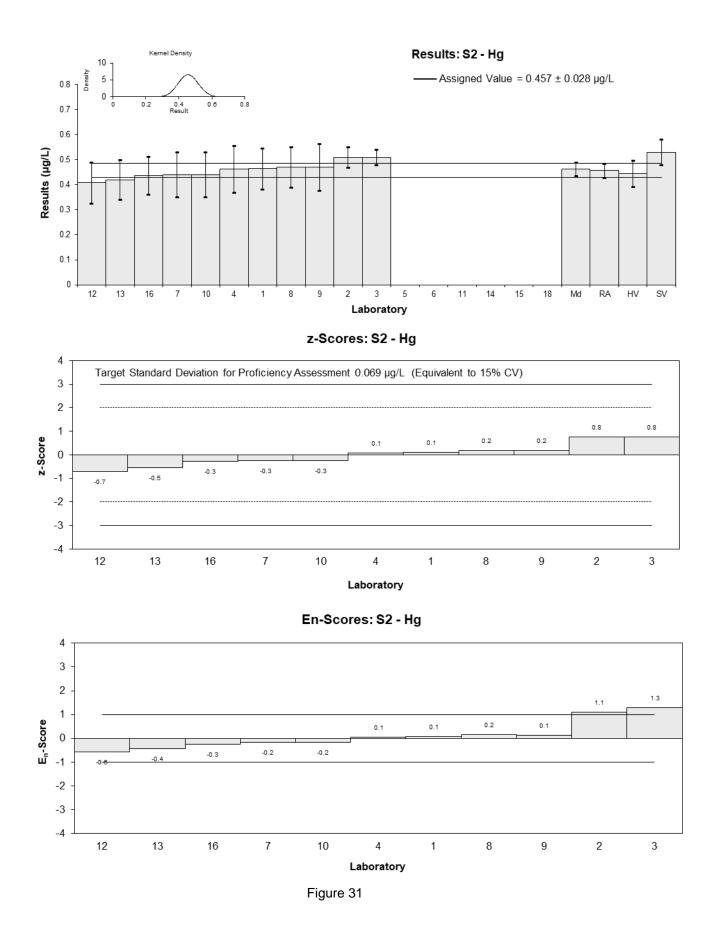


Sample No.	S2
Matrix	River Water
Analyte	Fe
Unit	µg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	375.9	35.34	-0.39	-0.34
2	430	50	1.00	0.69
3	427.5	21.38	0.93	1.08
4	410	62	0.49	0.28
5	NT	NT		
6	365	73	-0.66	-0.34
7	430	103	1.00	0.37
8	406.52	57	0.40	0.25
9	376	75.1	-0.38	-0.19
10	410	82	0.49	0.22
11	NT	NT		
12	352	52.8	-1.00	-0.66
13	327	33	-1.64	-1.52
14	NT	NT		
15	NT	NT		
16	371	29	-0.51	-0.51
18	NT	NT		

Assigned Value	391	26
Spike Value	Not Spiked	
Homogeneity Value	348	42
Robust Average	391	26
Median	391	25
Mean	390	
N	12	
Мах	430	
Min	327	
Robust SD	36	
Robust CV	9.3%	

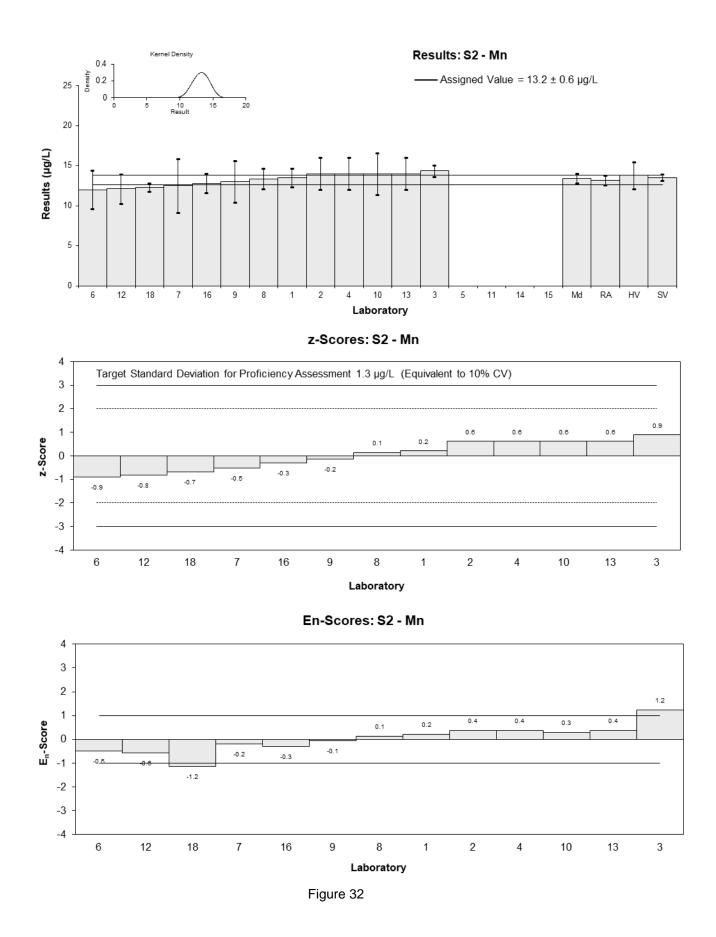


Sample No.	S2
Matrix	River Water
Analyte	Hg
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	0.464	0.081	0.10	0.08
2	0.51	0.04	0.77	1.09
3	0.51	0.03	0.77	1.29
4	0.463	0.093	0.09	0.06
5	NT	NT		
6	<0.5	NR		
7	0.44	0.09	-0.25	-0.18
8	0.47	0.08	0.19	0.15
9	0.47	0.094	0.19	0.13
10	0.44	0.09	-0.25	-0.18
11	NT	NT		
12	0.408	0.0816	-0.71	-0.57
13	0.42	0.08	-0.54	-0.44
14	NT	NT		
15	NT	NT		
16	0.437	0.075	-0.29	-0.25
18	NT	NT		

Assigned Value	0.457	0.028
Spike Value	0.530	0.051
Homogeneity Value	0.445	0.053
Robust Average	0.457	0.028
Median	0.463	0.026
Mean	0.457	
N	11	
Мах	0.51	
Min	0.408	
Robust SD	0.037	
Robust CV	8.1%	

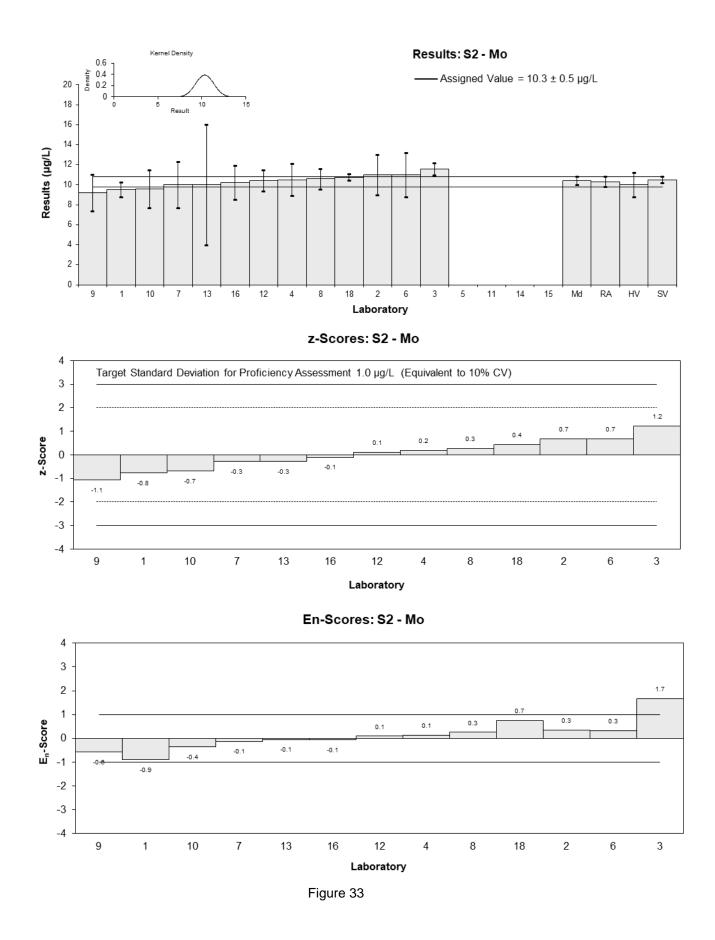


Sample No.	S2
Matrix	River Water
Analyte	Mn
Unit	µg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	13.47	1.16	0.20	0.21
2	14	2	0.61	0.38
3	14.36	0.72	0.88	1.24
4	14.0	2.0	0.61	0.38
5	NT	NT		
6	12	2.4	-0.91	-0.49
7	12.5	3.4	-0.53	-0.20
8	13.37	1.3	0.13	0.12
9	13.0	2.60	-0.15	-0.07
10	14	2.6	0.61	0.30
11	NT	NT		
12	12.1	1.815	-0.83	-0.58
13	14	2	0.61	0.38
14	NT	NT		
15	NT	NT		
16	12.8	1.2	-0.30	-0.30
18	12.3	0.5	-0.68	-1.15

Assigned Value	13.2	0.6
Spike Value	13.5	0.4
Homogeneity Value	13.8	1.7
Robust Average	13.2	0.6
Median	13.4	0.6
Mean	13.2	
N	13	
Мах	14.36	
Min	12	
Robust SD	0.93	
Robust CV	7.1%	

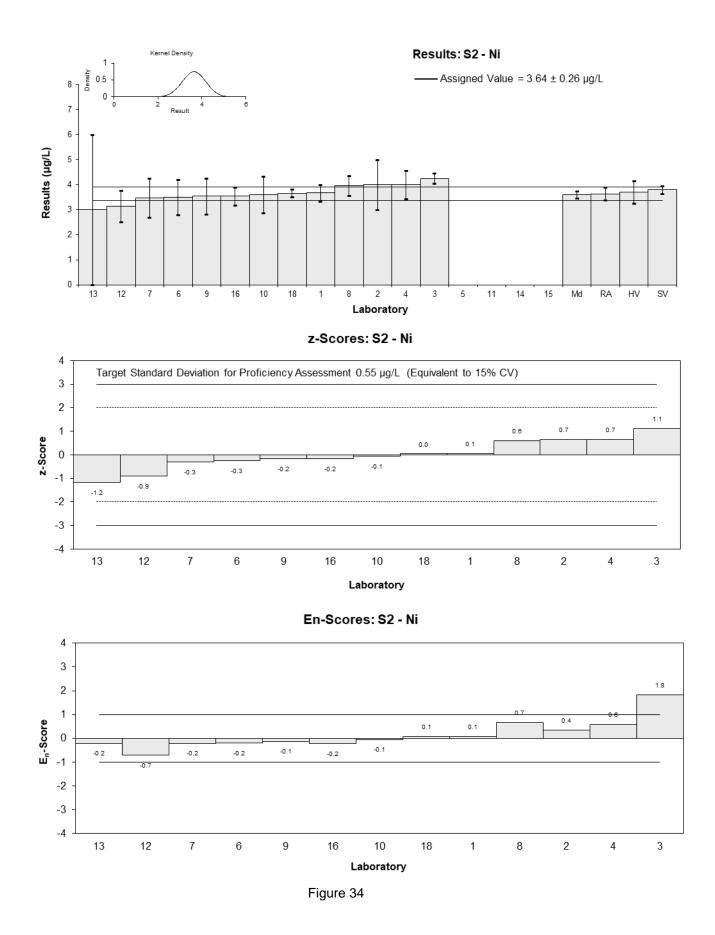


Sample No.	S2
Matrix	River Water
Analyte	Мо
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	9.51	0.73	-0.77	-0.89
2	11	2	0.68	0.34
3	11.57	0.58	1.23	1.66
4	10.5	1.6	0.19	0.12
5	NT	NT		
6	11	2.2	0.68	0.31
7	10.0	2.3	-0.29	-0.13
8	10.58	1.0	0.27	0.25
9	9.2	1.84	-1.07	-0.58
10	9.6	1.9	-0.68	-0.36
11	NT	NT		
12	10.4	1.04	0.10	0.09
13	10	6	-0.29	-0.05
14	NT	NT		
15	NT	NT		
16	10.2	1.7	-0.10	-0.06
18	10.74	0.32	0.43	0.74

Assigned Value	10.3	0.5
Spike Value	10.5	0.3
Homogeneity Value	10.0	1.2
Robust Average	10.3	0.5
Median	10.4	0.4
Mean	10.3	
Ν	13	
Мах	11.57	
Min	9.2	
Robust SD	0.73	
Robust CV	7.1%	

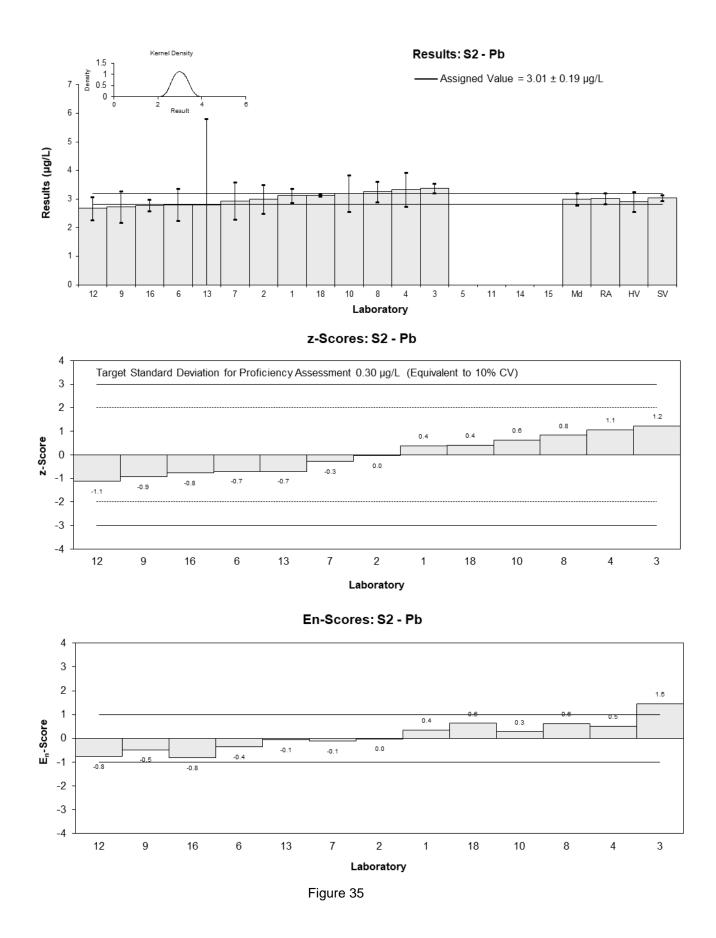


Sample No.	S2
Matrix	River Water
Analyte	Ni
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	3.67	0.33	0.05	0.07
2	4.0	1	0.66	0.35
3	4.25	0.21	1.12	1.83
4	4.00	0.56	0.66	0.58
5	NT	NT		
6	3.5	0.70	-0.26	-0.19
7	3.47	0.78	-0.31	-0.21
8	3.96	0.40	0.59	0.67
9	3.54	0.708	-0.18	-0.13
10	3.6	0.72	-0.07	-0.05
11	NT	NT		
12	3.15	0.63	-0.90	-0.72
13	3	3	-1.17	-0.21
14	NT	NT		
15	NT	NT		
16	3.54	0.36	-0.18	-0.23
18	3.66	0.15	0.04	0.07

Assigned Value	3.64	0.26
Spike Value	3.80	0.15
Homogeneity Value	3.70	0.44
Robust Average	3.64	0.26
Median	3.60	0.13
Mean	3.64	
N	13	
Мах	4.25	
Min	3	
Robust SD	0.37	
Robust CV	10%	

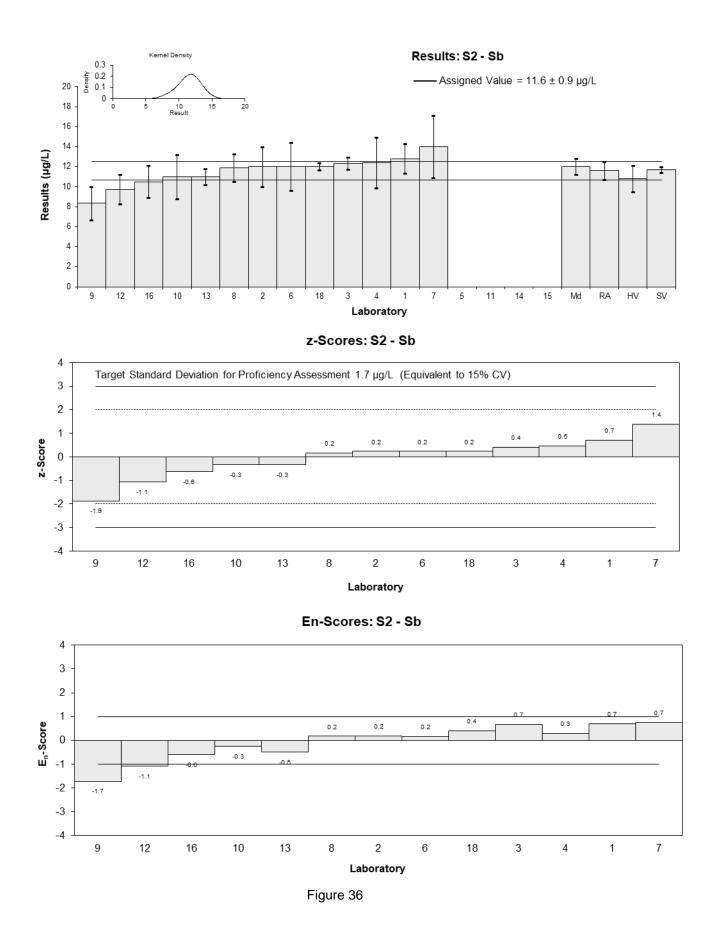


Sample No.	S2
Matrix	River Water
Analyte	Pb
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	3.12	0.25	0.37	0.35
2	3.0	0.5	-0.03	-0.02
3	3.38	0.17	1.23	1.45
4	3.33	0.60	1.06	0.51
5	NT	NT		
6	2.8	0.56	-0.70	-0.36
7	2.93	0.65	-0.27	-0.12
8	3.26	0.36	0.83	0.61
9	2.73	0.546	-0.93	-0.48
10	3.2	0.64	0.63	0.28
11	NT	NT		
12	2.67	0.4005	-1.13	-0.77
13	2.8	3	-0.70	-0.07
14	NT	NT		
15	NT	NT		
16	2.78	0.21	-0.76	-0.81
18	3.132	0.031	0.41	0.63

Assigned Value	3.01	0.19
Spike Value	3.04	0.10
Homogeneity Value	2.90	0.35
Robust Average	3.01	0.19
Median	3.00	0.21
Mean	3.01	
N	13	
Мах	3.38	
Min	2.67	
Robust SD	0.28	
Robust CV	9.1%	

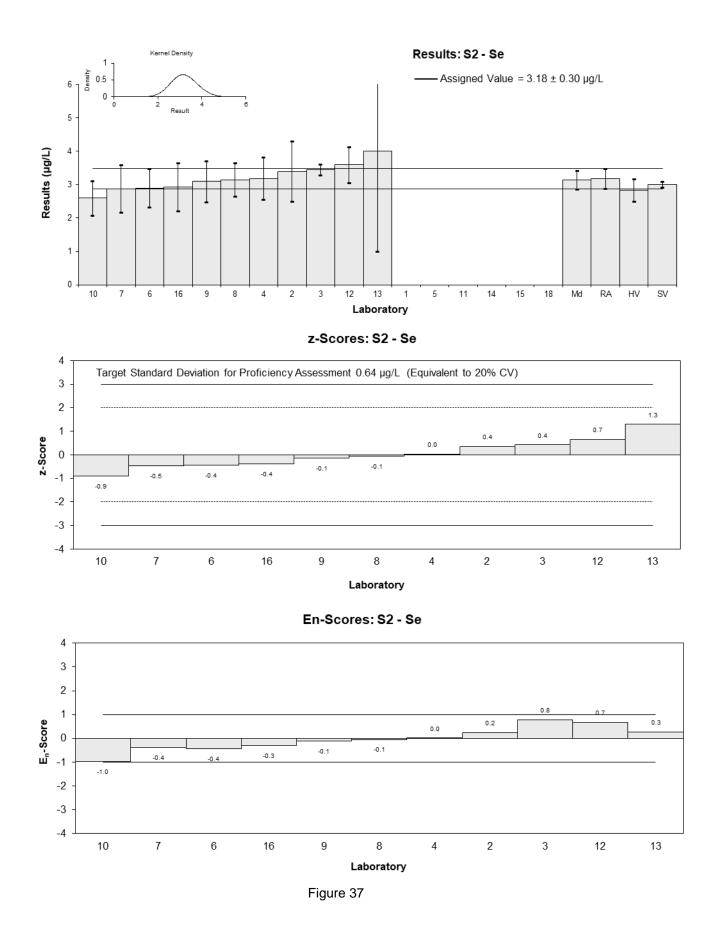


Sample No.	S2
Matrix	River Water
Analyte	Sb
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	12.81	1.47	0.70	0.70
2	12	2	0.23	0.18
3	12.32	0.62	0.41	0.66
4	12.4	2.5	0.46	0.30
5	NT	NT		
6	12	2.4	0.23	0.16
7	14.0	3.1	1.38	0.74
8	11.88	1.4	0.16	0.17
9	8.34	1.67	-1.87	-1.72
10	11	2.2	-0.34	-0.25
11	NT	NT		
12	9.74	1.461	-1.07	-1.08
13	11	0.8	-0.34	-0.50
14	NT	NT		
15	NT	NT		
16	10.5	1.6	-0.63	-0.60
18	12.00	0.35	0.23	0.41

Assigned Value	11.6	0.9
Spike Value	11.7	0.3
Homogeneity Value	10.8	1.3
Robust Average	11.6	0.9
Median	12.0	0.8
Mean	11.5	
N	13	
Мах	14	
Min	8.34	
Robust SD	1.3	
Robust CV	11%	

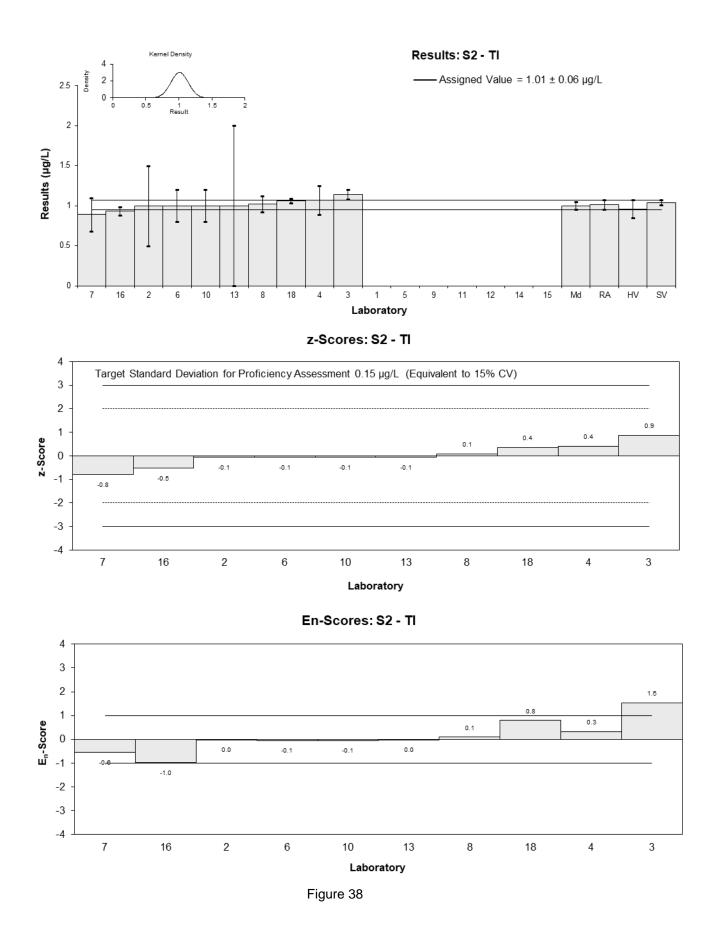


Sample No.	S2
Matrix	River Water
Analyte	Se
Unit	µg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<10	NR		
2	3.4	0.9	0.35	0.23
3	3.45	0.17	0.42	0.78
4	3.19	0.64	0.02	0.01
5	NT	NT		
6	2.9	0.58	-0.44	-0.43
7	2.88	0.71	-0.47	-0.39
8	3.15	0.50	-0.05	-0.05
9	3.1	0.62	-0.13	-0.12
10	2.6	0.52	-0.91	-0.97
11	NT	NT		
12	3.6	0.54	0.66	0.68
13	4	3	1.29	0.27
14	NT	NT		
15	NT	NT		
16	2.94	0.72	-0.38	-0.31
18	NT	NT		

Assigned Value	3.18	0.30
Spike Value	3.01	0.09
Homogeneity Value	2.83	0.34
Robust Average	3.18	0.30
Median	3.15	0.28
Mean	3.20	
Ν	11	
Max	4	
Min	2.6	
Robust SD	0.40	
Robust CV	12%	

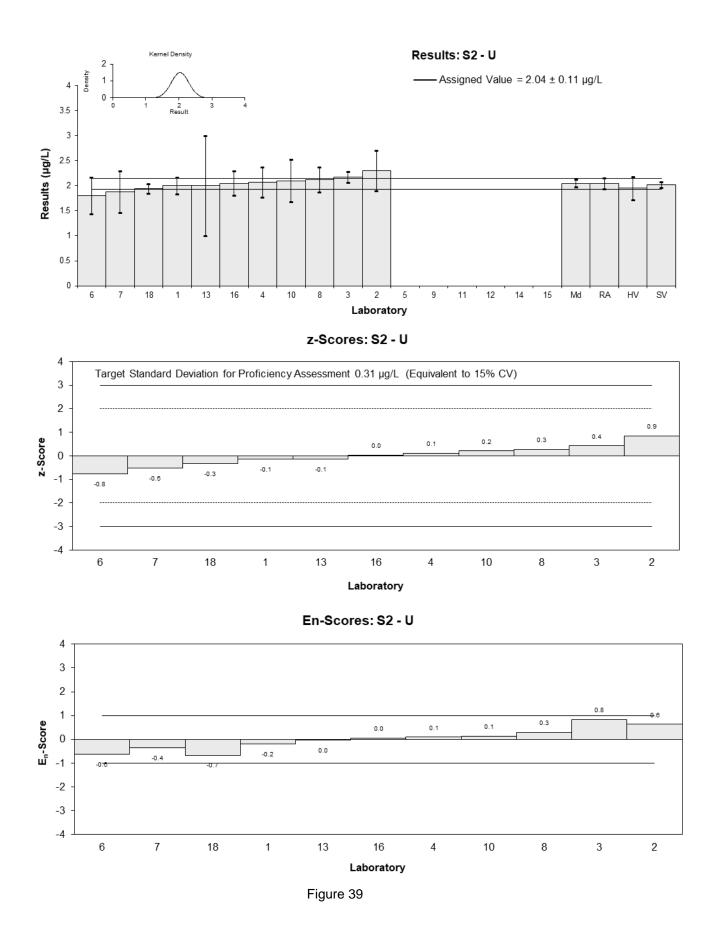


Sample No.	S2
Matrix	River Water
Analyte	ТІ
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	<1	NR		
2	1.0	0.5	-0.07	-0.02
3	1.14	0.06	0.86	1.53
4	1.07	0.18	0.40	0.32
5	NT	NT		
6	1.0	0.20	-0.07	-0.05
7	0.89	0.21	-0.79	-0.55
8	1.02	0.10	0.07	0.09
9	< 5	1		
10	1.0	0.20	-0.07	-0.05
11	NT	NT		
12	<5	<1.5		
13	1.0	1	-0.07	-0.01
14	NT	NT		
15	NT	NT		
16	0.931	0.053	-0.52	-0.99
18	1.063	0.030	0.35	0.79

Assigned Value	1.01	0.06
Spike Value	1.04	0.03
Homogeneity Value	0.96	0.11
Robust Average	1.01	0.06
Median	1.00	0.05
Mean	1.01	
Ν	10	
Мах	1.14	
Min	0.89	
Robust SD	0.072	
Robust CV	7.2%	

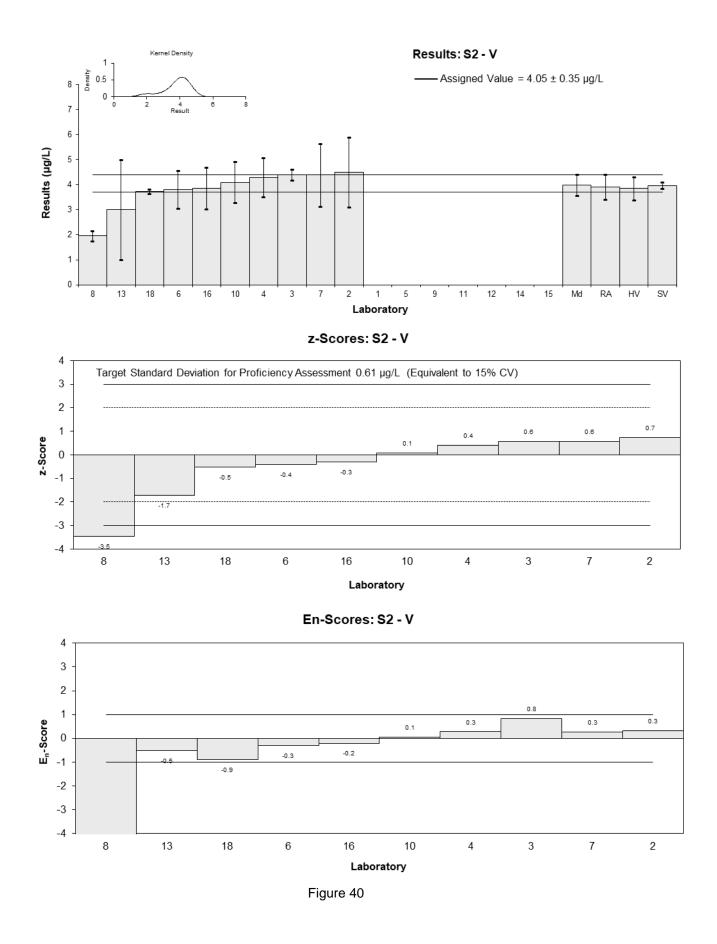


Sample No.	S2
Matrix	River Water
Analyte	U
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	2	0.17	-0.13	-0.20
2	2.3	0.4	0.85	0.63
3	2.17	0.11	0.42	0.84
4	2.07	0.30	0.10	0.09
5	NT	NT		
6	1.8	0.36	-0.78	-0.64
7	1.88	0.42	-0.52	-0.37
8	2.12	0.25	0.26	0.29
9	< 5	1		
10	2.1	0.42	0.20	0.14
11	NT	NT		
12	<5	<1.5		
13	2	1	-0.13	-0.04
14	NT	NT		
15	NT	NT		
16	2.05	0.24	0.03	0.04
18	1.94	0.10	-0.33	-0.67

Assigned Value	2.04	0.11
Spike Value	2.02	0.06
Homogeneity Value	1.95	0.23
Robust Average	2.04	0.11
Median	2.05	0.08
Mean	2.04	
N	11	
Мах	2.3	
Min	1.8	
Robust SD	0.14	
Robust CV	7%	


Sample No.	S2
Matrix	River Water
Analyte	V
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	Z	En
1	<10	NR		
2	4.5	1.4	0.74	0.31
3	4.39	0.22	0.56	0.82
4	4.29	0.78	0.40	0.28
5	NT	NT		
6	3.8	0.76	-0.41	-0.30
7	4.39	1.26	0.56	0.26
8*	1.95	0.20	-3.46	-5.21
9	< 5	1		
10	4.1	0.82	0.08	0.06
11	NT	NT		
12	<5	<1.5		
13	3	2	-1.73	-0.52
14	NT	NT		
15	NT	NT		
16	3.86	0.83	-0.31	-0.21
18	3.73	0.09	-0.53	-0.89

* Outlier, see Section 4.2

Assigned Value	4.05	0.35
Spike Value	3.97	0.13
Homogeneity Value	3.85	0.46
Robust Average	3.90	0.50
Median	3.98	0.42
Mean	3.80	
Ν	10	
Мах	4.5	
Min	1.95	
Robust SD	0.63	
Robust CV	16%	

Sample No.	S2
Matrix	River Water
Analyte	Zn
Unit	μg/L

Participant Results

Lab. Code	Result	Uncertainty	z	En
1	27.78	2.39	0.18	0.18
2	29	6	0.62	0.28
3	30.11	1.51	1.03	1.41
4	28.2	4.6	0.33	0.19
5	NT	NT		
6	26	5.2	-0.48	-0.24
7	25.7	6.2	-0.59	-0.25
8*	43.45	6.5	5.92	2.44
9	26.3	5.26	-0.37	-0.18
10	27	5.4	-0.11	-0.05
11	NT	NT		
12	23.7	3.555	-1.32	-0.95
13	29	5	0.62	0.33
14	NT	NT		
15	NT	NT		
16	26.5	2.6	-0.29	-0.28
18	27.2	0.9	-0.04	-0.06

* Outlier, see Section 4.2

Assigned Value	27.3	1.3
Spike Value	27.1	0.7
Homogeneity Value	24.8	3.0
Robust Average	27.5	1.4
Median	27.2	1.2
Mean	28.5	
Ν	13	
Мах	43.45	
Min	23.7	
Robust SD	2.0	
Robust CV	7.4%	

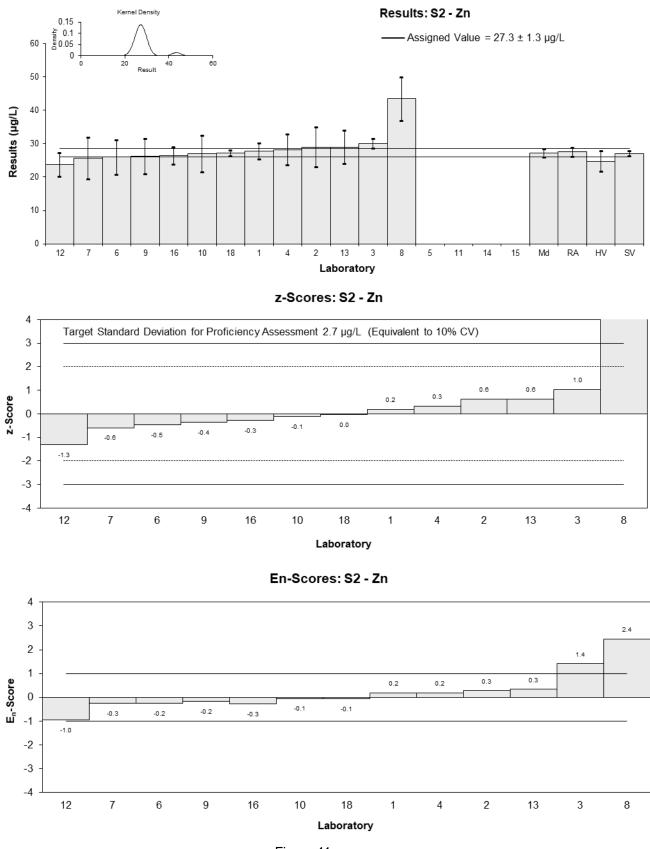


Figure 41

87

6 DISCUSSION OF RESULTS

6.1 Assigned Value

Sample S1 was filtered sea water while Sample S2 was filtered river water. To both a known amount of single element standard solutions was added.

Assigned Values were the robust average of participants' results. The robust averages and their associated expanded uncertainties were calculated using the procedure described in 'ISO13528:2022. Results less than 50% and more than 150% of the robust average were excluded prior to the calculation of each assigned value.⁷ Appendix 2 sets out the calculation for the robust average of Fe in Sample S1 and its associated uncertainty.

The assigned values, spike values and homogeneity values were in agreement with each other within their estimates of uncertainty for all elements of interest.

Traceability The consensus of participants' results (robust average) is not traceable to any external reference. So although expressed in SI units, the metrological traceability of these assigned values has not been established.

6.2 Measurement Uncertainty Reported by Participants

Participants were asked to report an estimate of the expanded measurement uncertainty associated with their results. Of 468 numerical results, 462 (99%) were reported with an expanded measurement uncertainty. The magnitude of these expanded uncertainties was within the range 1% to 208% of the reported value. The participants used a wide variety of procedures to estimate the expanded measurement uncertainty. These are presented in Table 3.

Approaches to estimating measurement uncertainty include: standard deviation of replicate analysis, Horwitz formula, long term reproducibility, professional judgement, bottom up approach, top down approach using precision and estimates of method and laboratory bias, and top down approach using only the reproducibility from inter-laboratory comparison studies.^{9–14}

Participation in proficiency testing programs allows participants to check how reasonable their estimates of uncertainty are. Results and the expanded uncertainties are presented in the bar charts for each analyte (Figure 2 to 41). As a simple rule of thumb, when the uncertainty estimate is smaller than uncertainty of the assigned value, or larger than the uncertainty of the assigned value plus twice the target standard deviation, then this should be reviewed as suspect. For example, 13 laboratories reported results for Pb in S2. The uncertainty of the assigned value estimated from the robust standard deviation of the 13 laboratories' results is $0.19 \,\mu$ g/L (see equation 4, Appendix 2). If Laboratory 18 result is coming from one measurement then they might have under-estimated its expanded measurement uncertainties reported for Pb in S2 (0.031 µg/L) as an uncertainty estimated from one measurement cannot be smaller than the uncertainty estimated from 13 measurements. Alternatively, estimates of uncertainties for As in S1 larger than $1.45 \,\mu$ g/L (the uncertainty of the assigned value, $0.35 \,\mu$ g/L plus the allowable variation from the assigned value, the target standard deviation of 0.55 µg/L, multiplied by 2, the coverage factor for a confidence interval of 95%), should also be viewed as suspect. For example, the expanded measurement uncertainties reported by laboratory 2 for As in S1 (2.6 µg/L) might have been over-estimated.

When a laboratory has successfully participated in at least 6 proficiency testing studies, the standard deviation from proficiency testing studies only, can also be used to estimate the uncertainty of their measurement results.¹⁰ An example of estimating measurement uncertainty using proficiency testing data only is given in Appendix 3.

Laboratories 3 and 18 should review their calculation procedure for estimating measurement uncertainty as most of their uncertainties were very low.

Laboratories 13 and 14 should also review their procedure for estimating measurement uncertainty. Most of the uncertainties they reported were over-estimated.

Laboratory 9 attached estimates of the expanded measurement uncertainty to results reported as being less than their limit of detection. An estimate of uncertainty expressed as a value cannot be attached to a result expressed as a range.⁹

Laboratory 13 reported an estimate of expanded uncertainty for some measurement results equal to or larger than the results themselves.

In some cases the results were reported with an inappropriate number of significant figures. The recommended format is to write uncertainty to no more than two significant figures and then to write the result with the corresponding number of decimal places. For example, instead of $106.7 \pm 21.3 \mu g/L$, it is better to report $107 \pm 21 \mu g/L$ or instead of $2.102 \pm 0.21 \mu g/L$, it is better to report $2.10 \pm 0.21 \mu g/L$.

6.3 z-Score

The z-score compares the participant's deviation from the assigned value with the target standard deviation set for proficiency assessment.

The target standard deviation defines satisfactory performance in a proficiency test. Target standard deviations equivalent to 10% to 20% PCV were used to calculate z-scores. Unlike the standard deviation based on between laboratories CV, setting the target standard deviation as a realistic, set value enables z-scores to be used as fixed reference value points for assessment of laboratory performance, independent of group performance.

The between laboratory coefficient of variation predicted by the Thompson equation⁷ and the participants' coefficient of variation resulted in this study are presented for comparison in Table 44.

Sample	Test	Assigned value (µg/L)	Between Laboratories CV*	Thompson/ Horwitz CV	Target SD (as CV)
S 1	Ag	1.50	12%	22%	15%
S1	Al	27.3	25%	22%	20%
S1	As	2.76	18%	22%	20%
S1	Be	1.45	15%	22%	15%
S1	Cd	0.784	12%	22%	15%
S1	Cr	1.89	6.5%	22%	15%
S1	Cu	11.2	10%	22%	15%
S1	Fe	42.2	11%	22%	15%
S1	Hg	0.316	14%	22%	15%
S1	Mn	5.50	11%	22%	15%
S1	Ni	2.86	12%	22%	15%
S1	Р	122	27%	22%	20%
S1	Pb	1.55	15%	22%	15%
S1	Sb	5.72	8%	22%	15%
S1	Se	3.04	22%	22%	20%
S1	Sn	4.22	7.1%	22%	15%
S1	Tl	1.03	9.8%	22%	15%
S1	U	2.58	7.8%	22%	15%
S1	V	3.40	8.5%	22%	15%
S1	Zn	17.6	16%	22%	15%
S2	Ag	1.83	16%	22%	15%

Table 44 Between Laboratory CV of this Study, Thompson CV and Set Target CV

Sample	Test	Assigned value (µg/L)	Between Laboratories CV*	Thompson/ Horwitz CV	Target SD (as CV)
S2	Al	54.7	9%	22%	10%
S2	As	2.69	9.7%	22%	20%
S2	Be	4.88	6.3%	22%	15%
S2	Cd	2.49	5.5%	22%	10%
S2	Со	1.05	9.1%	22%	15%
S2	Cr	1.80	15%	22%	15%
S2	Cu	27.3	7.8%	22%	10%
S2	Fe	391	9.3%	18%	10%
S2	Hg	0.457	8.1%	22%	15%
S2	Mn	13.2	7.1%	22%	10%
S2	Мо	10.3	7.1%	22%	10%
S2	Ni	3.64	10%	22%	15%
S2	Pb	3.01	9.1%	22%	10%
S2	Sb	11.6	11%	22%	15%
S2	Se	3.18	12%	22%	20%
S2	Tl	1.01	7.2%	22%	15%
S2	U	2.04	7%	22%	15%
S2	V	4.05	10%	22%	15%
S2	Zn	27.3	6.5%	22%	10%

The dispersal of participants' z-scores is presented in Figure 42 (by laboratory code) and in Figure 44 (by test). Of 468 results for which z-scores were calculated, 441 (94%) returned a satisfactory score of $|z| \le 2.0$ and 8 (2%) were questionable of 2.0 < |z| < 3.0. Participants with multiple z-scores larger than 2 or smaller than -2 should check for laboratory bias.

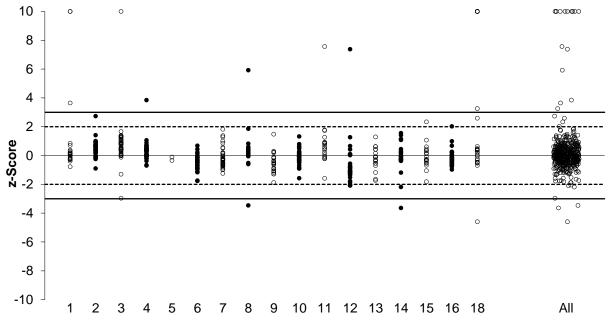


Figure 42: z-Score Dispersal by Laboratory

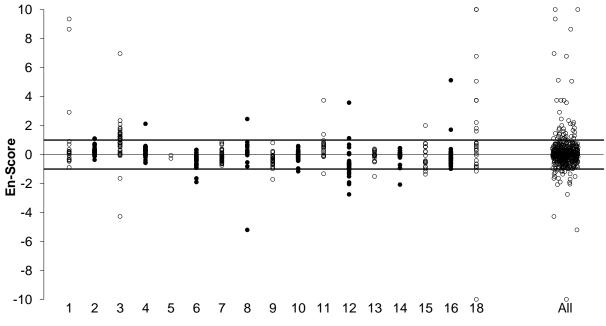
A summary of participants' performance is presented in Figure 45.

Laboratory 7 reported results for all 40 tests and all returned satisfactory z-scores and E_n -scores.

Laboratory 4 returned satisfactory results for 39 tests out of a total of 40 reported.

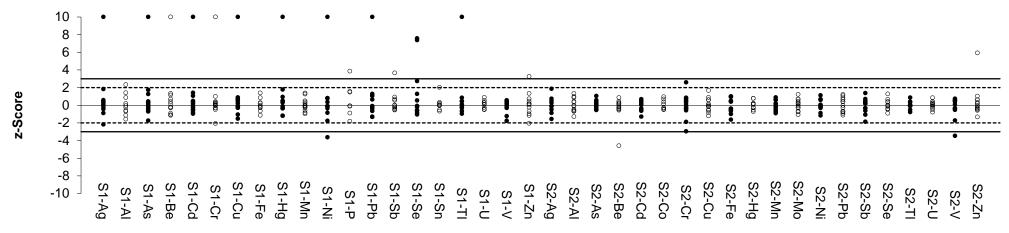
Of 40 tests for which z-scores were calculated Laboratory **10** reported results for 39 of them, all of which returned satisfactory z-scores.

Laboratory **3** returned satisfactory results for 38 tests out of a total of 40 reported.


All results reported by Laboratories 6 (35), 9 (27), 13 (19) and 5 (2) returned satisfactory z-scores.

6.4 E_n-score

 E_n -score can be interpreted only in conjunction with z-scores. The E_n -score indicates how closely a result agrees with the assigned value taking into account the respective uncertainties. An unsatisfactory E_n score for an analyte can either be caused by an inappropriate measurement, an inappropriate estimation of measurement uncertainty, or both.


The dispersal of participants' E_n -scores is graphically presented in 3. Where a laboratory did not report an expanded uncertainty with a result, an expanded uncertainty of zero (0) was used to calculate the E_n -score.

Of 468 results for which E_n -scores were calculated, 405 (87%) returned a satisfactory score of $|E_n| \le 1.0$ indicating agreement of the participants' results with the assigned values within their respective expanded measurement uncertainties.

Scores of >10 or <-10 have been plotted as 10 or -10.

Scores of >10 or <-10 have been plotted as 10 or -10.

Figure 44 z-Score Dispersal by Analyte

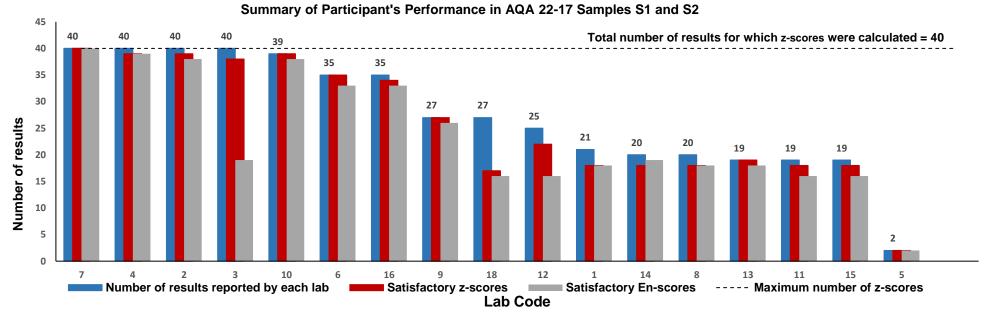


Figure 45: Summary of Participants Performance in AQA 21-18

Lab Code	Ag (µg/L)	Al (µg/L)	As (µg/L)	Be (µg/L)	Cd (µg/L)	Cr (µg/L)	Cu (µg/L)	Fe (µg/L)	Hg (µg/L)	Mn (µg/L)
A.V.	1.50	27.3	2.76	1.45	0.784	1.89	11.2	42.2	0.316	5.50
H.V.	1.40	NA	2.41	1.56	0.762	1.92	12.6	43.2	0.363	6.24
1	24.1	<50	<5	<5	8	<5	10.72	<50	0.33	5.28
2	1.6	26	3.0	1.6	0.95	2.0	12	41	0.36	5.4
3	1.57	32	2.77	1.74	0.84	1.89	12.7	51	1.25	6.64
4	1.45	23.5	2.92	1.54	0.782	1.88	12.4	38.0	0.336	5.42
5	NR	NR	2.7	NR	NR	NR	NR	NR	0.3	NR
6	1.3	21	1.8	1.2	0.72	1.8	11	35	<0.5	4.8
7	1.91	28.4	2.37	1.38	0.67	1.93	10.7	40.9	0.34	5.64
8	NT									
9	< 5	< 50	2.9	1.25	0.724	1.75	9.44	< 50	0.31	5.02
10	1.5	27	2.5	1.4	0.75	1.9	11	44	0.30	5.5
11	1.63	18.6	3.72	1.4	0.83	1.95	11.1	47.5	0.4	6.55
12	<5	<50	3.46	1.21	0.69	1.3	8.65	<50	0.259	<5
13	NT									
14	1.01	35	2.6	1.7	0.81	1.8	11	42	0.26	5.3
15	1.53	40.0	2.39	1.49	0.91	1.98	12.2	40.3	NR	5.79
16	1.4	24	<4	NT	0.76	2.17	11.6	43.7	0.299	4.70
18	NT	NT	24.5	5.39	NT	5.5	140	NT	NT	5.9

Table 45 Summary of Participants' Results and Performance for Sample S1

Shaded cells are results which returned a questionable or unsatisfactory z-score. A.V. = Assigned Value, H.V. = Homogeneity Value, NA = Not Available

Lab Code	Ni (µg/L)	P (µg/L)	Pb (µg/L)	Sb (µg/L)	Se (µg/L)	Sn (µg/L)	Tl (μg/L)	U (µg/L)	V (µg/L)	Zn (µg/L)
A.V.	2.86	122	1.55	5.72	3.04	4.22	1.03	2.58	3.40	17.6
H.V.	3.03	100	1.58	6.17	3.08	3.82	1.03	2.38	3.16	17.4
1	<5	<1000	<5	8.85	<50	<5	<5	<5	<50	<25
2	3.2	100	1.7	6.2	4.7	4.2	1.1	2.7	3.3	18
3	3.2	119	1.80	5.70	3.82	4.36	1.04	2.63	3.68	21.1
4	3.01	216	1.53	5.54	3.37	4.43	1.04	2.79	3.59	17.7
5	NR	NT	NR	NR	NR	NR	NR	NR	NR	NR
6	2.8	NT	1.4	NT	2.5	NT	0.88	2.4	2.5	18
7	2.71	120	1.85	5.54	2.68	3.79	0.93	2.39	2.77	15.0
8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
9	2.49	158	1.25	< 5	2.66	< 5	< 5	< 5	< 5	14.5
10	3.2	120	1.5	5.3	3.0	4.2	<1	2.4	3.5	17
11	2.8	NT	1.5	6.51	7.64	4.26	1.16	2.92	3.65	19.5
12	2.1	NT	1.24	5.74	7.53	<5	<5	<5	<5	12.2
13	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
14	1.3	160	1.8	5.4	2.9	4.2	1.1	2.7	3.4	18
15	2.82	77.6	1.46	5.26	2.40	3.90	0.98	2.48	3.24	18.8
16	<7	NT	1.52	6.3	<4	5.5	1.0	2.6	3.5	15.8
18	8.9	NT	4.7	5.53	NT	NT	2.8	2.39	3.6	26.2

Table 45 Summary of Participants' Results and Performance for Sample S1 (continued)

Shaded cells are results which returned a questionable or unsatisfactory z-score. A.V. = Assigned Value, H.V. = Homogeneity Value

Lab Code	Ag (µg/L)	Al (µg/L)	As (µg/L)	Be (µg/L)	Cd (µg/L)	Co (µg/L)	Cr (µg/L)	Cu (µg/L)	Fe (µg/L)	Hg (µg/L)
A.V.	1.83	54.7	2.69	4.88	2.49	1.05	1.80	27.3	391	0.457
H.V.	1.83	53.2	2.88	5.23	2.40	0.99	1.98	27.0	348	0.445
1	<1	54.48	2.58	4.71	2.51	<1	2.03	27.68	375.9	0.464
2	1.9	60	3.0	5.0	2.6	1.2	2.0	29	430	0.51
3	1.97	47.6	3.25	5.51	2.58	1.16	1.00	31.86	427.5	0.51
4	2.03	54.2	2.84	4.61	2.66	1.11	1.94	29.7	410	0.463
5	NT									
6	1.7	51	2.6	5.2	2.4	1.0	1.8	27	365	<0.5
7	1.59	59.4	2.42	4.72	2.33	0.97	1.75	27.4	430	0.44
8	2.34	56.61	2.41	4.88	2.52	1.07	1.93	25.66	406.52	0.47
9	< 5	51.5	2.48	5.09	2.17	< 1	1.64	25.9	376	0.47
10	1.4	62	2.7	5.0	2.5	1.0	1.7	25	410	0.44
11	NT									
12	<5	<50	2.92	4.47	2.51	<1	1.29	24	352	0.408
13	1.8	57	2.4	5	2.6	<1	1.7	27	327	0.42
14	NT									
15	NT									
16	1.8	50.9	2.72	4.54	2.35	1.00	1.87	26.9	371	0.437
18	NT	52.2	2.81	1.52	NT	0.977	2.5	29.0	NT	NT

Table 46 Summary of Participants' Results and Performance for Sample S2

Shaded cells are results which returned a questionable or unsatisfactory z-score. A.V. = Assigned Value, H.V. = Homogeneity Value

Lab Code	Mn (µg/L)	Mo (µg/L)	Ni (µg/L)	Pb (µg/L)	Sb (µg/L)	Se (µg/L)	Tl (μg/L)	U (µg/L)	V (µg/L)	Zn (µg/L)
A.V.	13.2	10.3	3.64	3.01	11.6	3.18	1.01	2.04	4.05	27.3
H.V.	13.8	10.0	3.70	2.90	10.8	2.83	0.96	1.95	3.85	24.8
1	13.47	9.51	3.67	3.12	12.81	<10	<1	2	<10	27.78
2	14	11	4.0	3.0	12	3.4	1.0	2.3	4.5	29
3	14.36	11.57	4.25	3.38	12.32	3.45	1.14	2.17	4.39	30.11
4	14.0	10.5	4.00	3.33	12.4	3.19	1.07	2.07	4.29	28.2
5	NT	NT	NT	NT						
6	12	11	3.5	2.8	12	2.9	1.0	1.8	3.8	26
7	12.5	10.0	3.47	2.93	14.0	2.88	0.89	1.88	4.39	25.7
8	13.37	10.58	3.96	3.26	11.88	3.15	1.02	2.12	1.95	43.45
9	13.0	9.2	3.54	2.73	8.34	3.1	< 5	< 5	< 5	26.3
10	14	9.6	3.6	3.2	11	2.6	1.0	2.1	4.1	27
11	NT	NT	NT	NT						
12	12.1	10.4	3.15	2.67	9.74	3.6	<5	<5	<5	23.7
13	14	10	3	2.8	11	4	1.0	2	3	29
14	NT	NT	NT	NT						
15	NT	NT	NT	NT						
16	12.8	10.2	3.54	2.78	10.5	2.94	0.931	2.05	3.86	26.5
18	12.3	10.74	3.66	3.132	12.00	NT	1.063	1.94	3.73	27.2

Table 46 Summary of Participants' Results and Performance for Sample S2 (continued)

Shaded cells are results which returned a questionable or unsatisfactory z-score. A.V. = Assigned Value, H.V. = Homogeneity Value

6.5 Participants' Results and Analytical Methods for Dissolved Elements

Sample S1 was filtered sea water and **Sample S2** was filtered river water. The concentration of Ag, As, Cr, Se, Tl and U in the two study samples was similar. This study design was aimed at helping laboratories to investigate the effect of sample matrices on their performance.

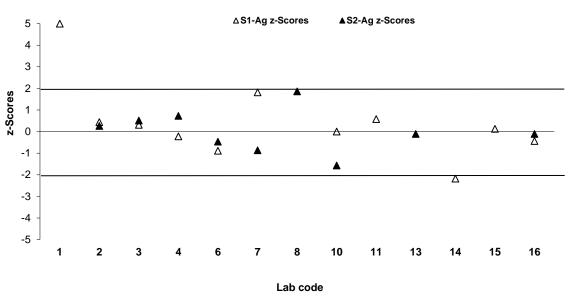
Sea water contains significant quantities of dissolved salts, especially sodium chloride and sulphates. Molecular ions originated from dissolved salts can frequently cause severe interference in ICP-MS measurements because these molecular ions have similar mass to the isotopes used in elemental determination. As a result, false positives, and concentrations much higher than the true values are frequently obtained by conventional quadrupole ICP-MS which does not have the resolution required to separate molecular ions from the isotope of interest. The isotopes most frequently affected in salt water analysis are ⁵²Cr, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁴Zn, ⁶⁶Zn, ⁷⁵As, ⁷⁸Se, ⁸²Se. Overall, the between-laboratory CVs of the river water Sample S2 were lower than those of the sea water sample S1.

As and Se in sea water were the tests which challenged most participants analytical techniques when compared to the river water sample. The between laboratories CVs for these tests in S1 were almost double of S2.

Low level P and Se in S1 were the tests which presented the most analytical difficulty to participating laboratories with CVs of 27% and 22% respectively.

A summary of participants' results and performance in the two study samples is presented in Tables 45 and 46 and in Figures 42 to 44.

Individual Element Commentary

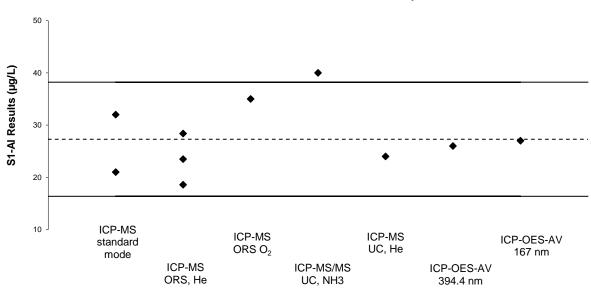

Participants were requested to analyse the two water samples for dissolved elements using their normal test methods and to report a single result as they would normally report to a client. The method descriptions provided by participants are presented in Tables 1 and 3 and instrumental conditions are presented in Appendix 5.

Of 17 participants who reported results, 6 performed digestion. No significant difference was observed between the performances of participants who performed digestion and the ones who did not conduct a digestion procedure on the test samples. Instrumental measurement was one of the main factors that influenced results in the two water samples. However, participants' performance does not reflect instrumental performance alone, but also the performance of the analyst and of the analytical method used by the testing laboratory. Thus, these results should not be construed as an evaluation of a particular instrument.

Most laboratories reported using ICP-MS with a collision/reaction cell; some used ICP-OES and some ICP-MS in standard mode. One participant reported using ICP-MS/MS in standard, collision, or reaction mode with He, O₂ or NH₃. Most laboratories used Sc, Y or Rh as internal standard. Laboratory 1 reported using Sc, Ir or Rh while Laboratories 8 and 18 used multiple internal standards (Y, Ce, Ga, Ge, Ir, Ho, Sc, Tb, Th, Rh, In or Bi). Plots of participants' results and performance versus instrumental techniques used are presented in Figures 46 to 61.

Silver in the river and sea water sample was at similar level. Participants' performance in the two study samples are presented in Figure 46. Silver measurements in water presented difficulties to Laboratory 1 in S1, their reported result returned an unsatisfactory z-score while in S2 they reported a result of less than 1 when the assigned value for this test in the river water sample was $1.83 \mu g/L$.

All participants used ICP-MS but one. Laboratory 18 reported using ICP-MS/MS in standard mode.



S1-Ag z-Scores vs S2-Ag z-Scores*

*The z-Score >5 has been plotted as 5.

Figure 46 S1 and S2 Ag z-Scores vs Laboratory Code

Aluminium level in S1 was low, at 27.3 μ g/L and was among the most challenging tests for participating laboratories, with a between-laboratory CV of 25%. Plots of instrumental techniques versus results are presented in Figure 47.

S1 AI Results vs Instrumental Technique

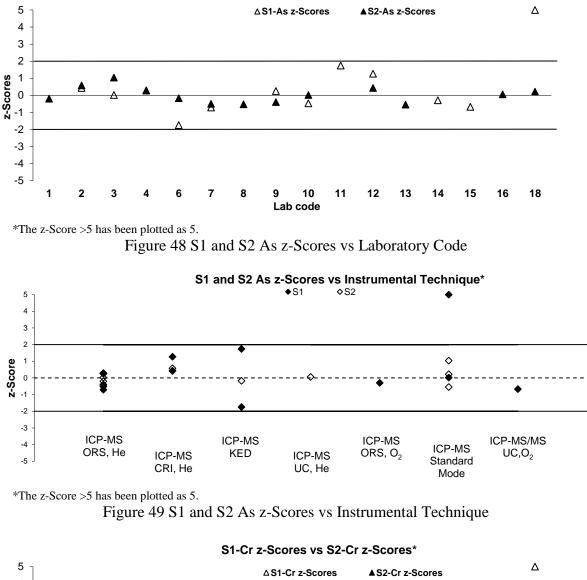
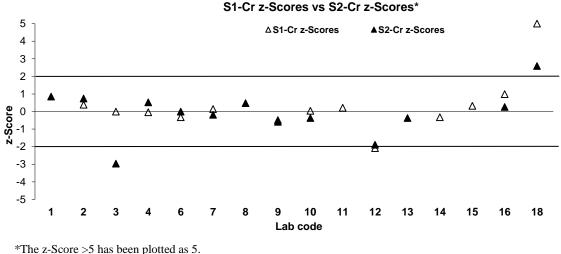
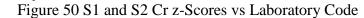

Horizontal lines on chart are the results corresponding to z-scores of 2 and -2

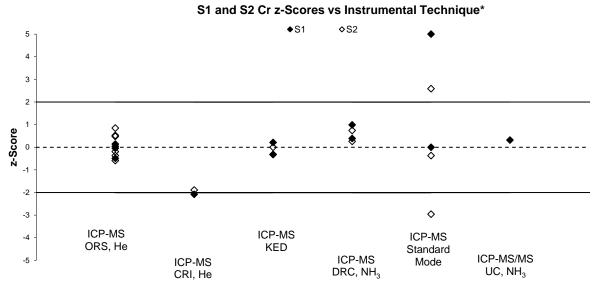
Figure 47 S1-Al Results vs Instrumental Technique


Arsenic was at similar level in both the sea water and river water samples at 2.76 μ g/L and 2.69 μ g/L respectively. Although of 12 reported results for As in S1 and S2 all returned satisfactory z-scores except for one, reported results for the sea water were more variable than


in river water; the between-laboratory CV in S1 was 18% while in S2 it was almost half of this, at 9.7% (Table 44 and Figure 48).

For As measurements participants reported using ICP-MS in collision or reaction mode with He or O₂ as collision/reaction gases (Figure 49).

S1-As z-Scores vs S2-As z-Scores*



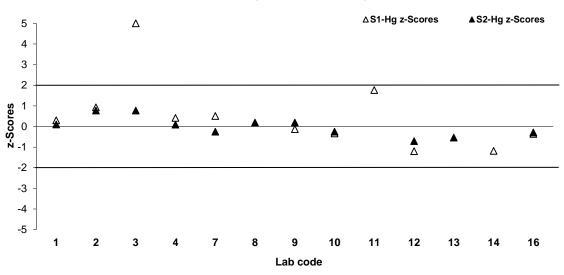


Figure 51 S1 and S2 Cr z-Scores vs Instrumental Technique

Chromium level in S1 was 1.89 μ g/L and in S2 was 1.80 μ g/L. The results in the river water sample were more variable than those in sea water. The between-laboratory CV in S1 was 6.5% while in S2 it was more than double, at 15%. The high carbon content in the river water may explain the discrepancy as ⁵²Cr can have significant interferences from ⁴⁰Ar¹²C when measured by ICP-MS.

Participants' performance in the two water samples are presented in Figure 50. Laboratories 12 and 18 should check for method bias as the results reported by them were too low and too high respectively.

Plots of participants' performance in the two water samples versus instrumental technique used are presented in Figure 51.

S1-Hg z-Scores vs S2-Hg z-Scores

Figure 52 S1 and S2 Hg z-Scores vs Laboratory Code

^{*}The z-Score >5 has been plotted as 5.

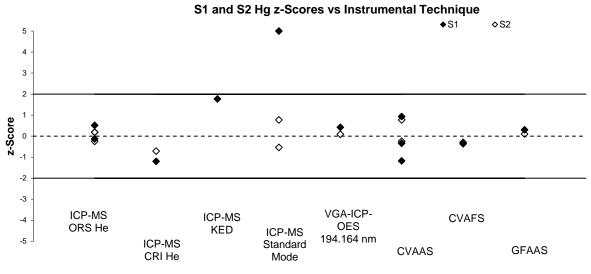


Figure 53 S1 and S2 Hg z-Scores vs Instrumental Technique

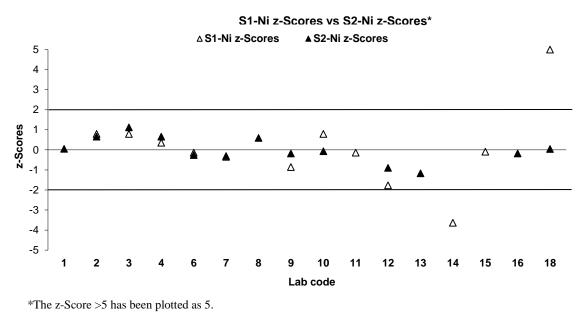
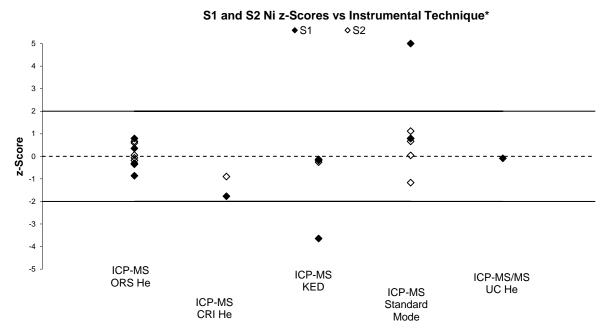
Mercury level in S1 was 0.316 g/L and in S2 was 0.457 μ g/L. All results reported for Hg in the two study samples returned satisfactory z-scores but one (Figure 52).

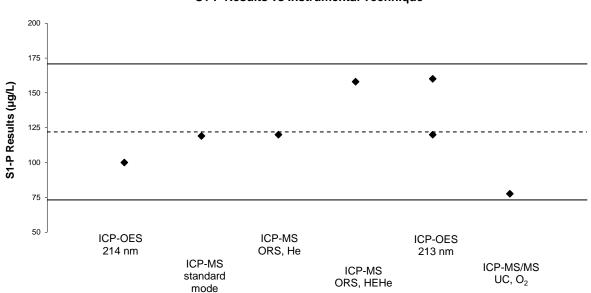
Participants used a wide variety of instrumental techniques for Hg measurements in the two water samples and all produced compatible results (Figure 53).

CV-AAS was the most popular instrumental technique used for the measurement of low level Hg in sea water. One participant used ICP-OES with hydride generation accessory and a wavelength of 194.164 nm.

Nickel Of 12 participants who reported results for Ni in S1, 10 performed satisfactorily. In S2, of 13 reported results all returned satisfactory z-scores (Figure 54).

The high unsatisfactory result for Ni in S1 from ICP-MS measurements in standard mode may be an indication of unsolved interference problems (Figure 55).


Figure 54 S1 and S2 Ni z-Scores vs Laboratory Code



^{*}The z-Score >5 has been plotted as 5

Figure 55 S1 Ni Results vs Instrumental Technique

Phosphorus A limited number of laboratories had the capability to measure P in sea water at this level. Only eight participants reported results for this test and all but one were compatible with each other. Participants used various instrumental techniques: ICP-OES with wavelength 213 nm or 214 nm or ICP-MS in collision, reaction mode or standard mode (Figure 56).

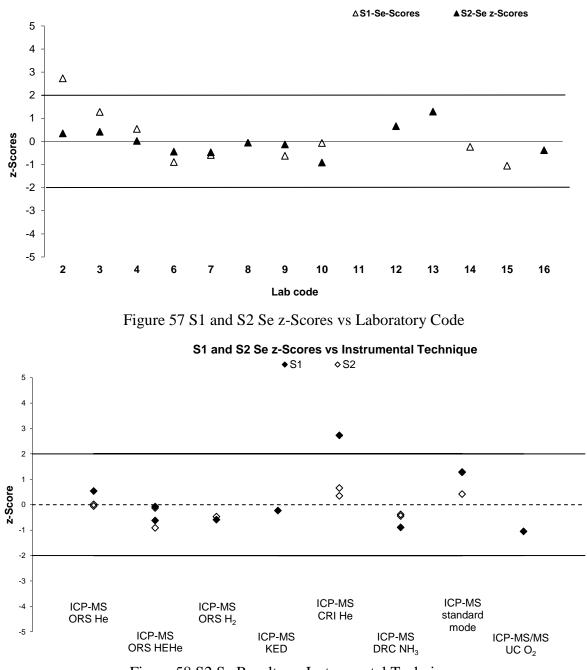
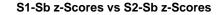

Horizontal lines on chart are the results corresponding to z-scores of 2 and -2

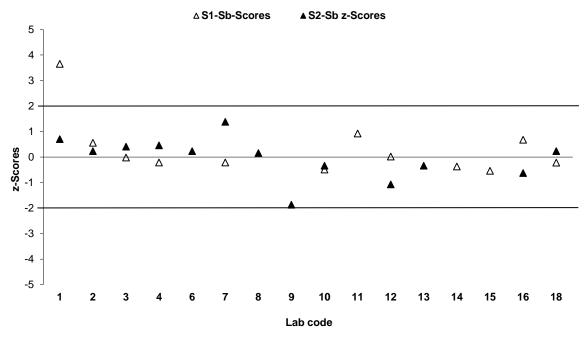
Figure 56 S1 P Results vs Instrumental Technique

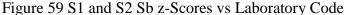
Selenium analysis in sea water is challenging due to there being multiple sources of significant interference. This is especially problematic at low levels where any unresolved interference can have a more significant effect on results. 11 laboratories reported Se results in S1 and S2; while all reported results in the river water sample returned satisfactory z-scores, only 7 were satisfactory in the sea water sample. Participants who reported

satisfactory Se results in S2 but high unsatisfactory results in S1 might not have overcome the interference problem in the sea water sample (Figure 57).

Plots of participants' performance for Se in S1 and S2 versus instrumental technique used are presented in Figure 58.




S1-Se z-Scores vs S2-Se z-Scores

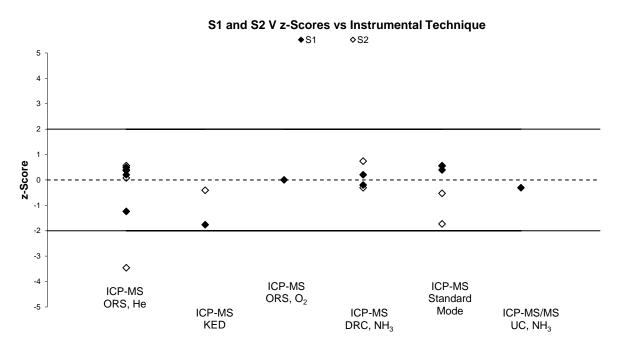
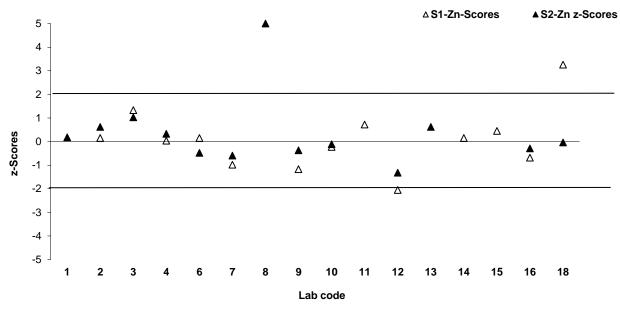

Figure 58 S2 Se Results vs Instrumental Technique

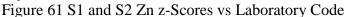
Antimony level in S1 was $5.72 \mu g/L$ and in S2 was $11.6 \mu g/L$. All results reported for Sb in the two study samples returned satisfactory z-scores but one (Figure 59).

ICP-MS in collision mode was the preferred instrumental technique.

Vanadium Thirteen laboratories reported results for V in S1 and/or in S2. All performed satisfactorily but one (Figure 60). Problems with the calculation/reporting procedure might explain this laboratory unsatisfactory result. The results reported by them for V in S1 was half of the assigned value while the result reported for Zn was double.

Using a matrix matched control sample which is to be taken through every single step of the analytical process together with the routine sample will also help to check the calculation/reporting procedure.


Figure 60 S1 and S2-V z-Scores vs Instrumental Technique

Zinc is known to be ubiquitous in the environment; hence, special precautions (e.g. special gloves) are necessary in order to avoid contamination. Plots of participants' performance in the two types of water samples versus laboratory code number are presented in Figure 61.

S1-Zn z-Scores vs S2-Zn z-Scores

*The z-Score >5 has been plotted as 5.

6.6 z-Score Scatter plots

Scatter plots of z-scores for all analytes present in both study samples at a similar level are presented in Figure 62. Scores are predominantly in the upper right and lower left quadrants, indicating that laboratory bias is the major contributor to the variability of results. Points close to the diagonal axis demonstrate excellent repeatability, while points close to the zero demonstrate excellent repeatability and accuracy.

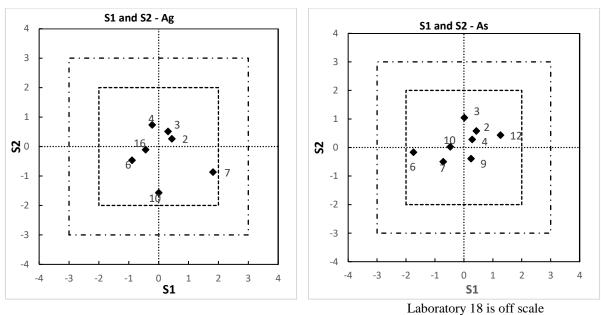


Figure 62 Scatter Plots of: z-Score for S1 and S2

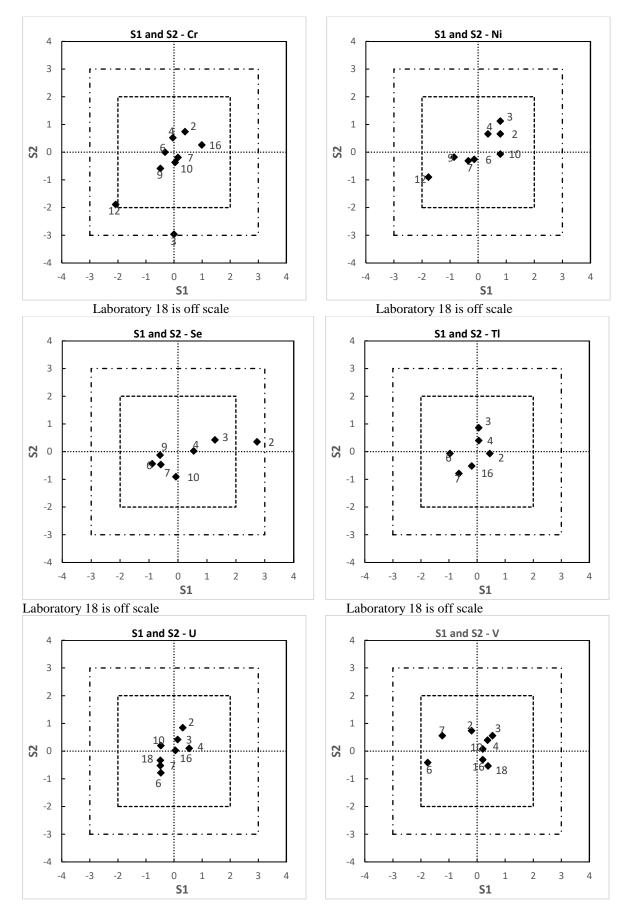


Figure 62: Scatter Plots of: z-Score for S1 and S2 (continued)

6.7 Comparison with Previous NMI Proficiency Tests of Metals in Water

AQA 22-17 is the 31^{st} NMI proficiency study of metals in water. Participants' performance in the measurement of trace elements in water (river water, seawater, wastewater and potable water) over the last ten years is presented in Figure 63. Over this period, the average proportion of satisfactory scores was 91% for z-scores and 83% for E_n-scores.

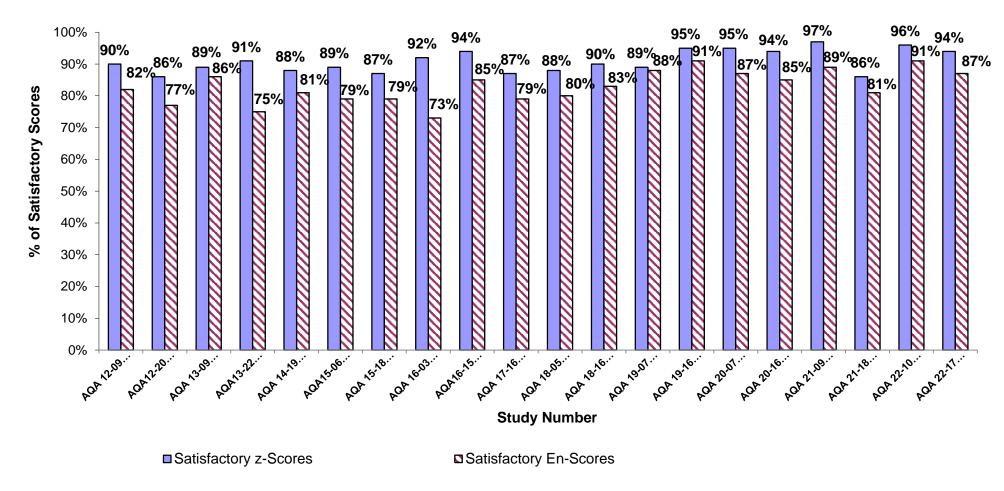
Over time, laboratories should expect at least 95% of their scores to lay within the range $|z| \le 2.0$. Scores in the range 2.0 < |z| < 3.0 occasionally can occur, however these should be interpreted in conjunction with the other scores obtained by that laboratory. For example, a trend of z-scores on one side of the zero line is an indication of method or laboratory bias.

Individual performance history reports are emailed to each participant at the end of the study; the consideration of z-scores for an analyte over time provides much more useful information than a single z-score.

6.8 Reference Materials and Certified Reference Materials

Participants reported whether control samples (spiked samples, certified reference materials-CRMs or matrix specific reference materials-RMs) had been used (Table 47).

Lab. Code	Description of Control Samples
1	CRM
2	CRM
4	SS
5	I641e- Hg
6	CWW-TM-B and CWW-TM-C (river water) NASS 7, CASS 6 and NMI MX014 (seawater)
7	SS
9	CRM
10	CRM
11	CRM - IV-16951
12	SS
13	CRM – HPS CRMs
14	CRM – High Purity Standards – Multi components Standards
15	MX014
16	SS
18	Elemental check standards sourced from LGC Standards (ISO 17034:2016 accredited Reference Materials Producer, A2LA Certificate No. 2848.02)


Table 47 Control Samples Used by Participants

Matrix matched control samples taken through all steps of the analytical process, are most valuable quality control tools for assessing the methods' performance.

Some laboratories reported using certified reference materials. These materials may not meet the internationally recognised definition of a Certified Reference Material:

'a reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures '¹⁶

A certified reference material for trace elements in sea water (MX014) is available from NMI.

Satisfactory z-Scores and En-Scores

Figure 63 Participants' Performance in Metals in Sea water PT Studies over Last Thirteen Years

7 REFERENCES

[1] ISO17043:2010, Conformity assessment – *General requirements for proficiency testing*.

[2] NMI 2021, *Study Protocol for Proficiency Testing*, viewed 27 January 2023, https://www.industry.gov.au/sites/default/files/2020-10/cpt_study_protocol.pdf >.

[3] NMI, 2022, *Chemical Proficiency Testing Statistical Manual*, viewed January 2023, https://www.industry.gov.au/sites/default/files/2019-07/cpt_statistical_manual.pdf>.

[4] Thompson, M, Ellison, S & Wood, R 2006, 'The international harmonized protocol for proficiency testing of (chemical) analytical laboratories', *Pure Appl. Chem*, vol 78, pp 145-196.

[5] National Environmental Protection Council, Schedule B1 Guidelines on the Investigation Levels for Soil and Groundwater, viewed 27 January 2023, https://www.legislation.gov.au/Details/F2013C00288/Html/Volume_2>.

[6] ISO13528:2022, *Statistical methods for use in proficiency testing by inter laboratory comparisons.*

[7] Thompson, M, 2000, 'Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing', *Analyst*, vol 125, pp 385-386.

[8] AS ISO/IEC 17025:2018, General requirements for the competence of testing and calibration laboratories

[9] Eurachem/CITAC Guide CG4, QUAM 2012, *Quantifying Uncertainty in Analytical Measurement*, 3rd ed., viewed January 2023,

<http://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf>.

[10] Bertil, M, 2004, Nordtest Report Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories TR 537, 4th Edition, Nordest Tekniikantie, Finland, Esopo.

[11] Hibbert, B 2007, *Quality Assurance for the Analytical Chemistry Laboratory*, Oxford University Press.

[12] ISO (2008), *Guide to the Expression of Uncertainty in Measurement (GUM)*, Geneva, Switzerland.

[13] Eurolab 2002, Technical Report No 1/2002 - Measurement Uncertainty in Testing.

[14] NMI, *Estimating Measurement Uncertainty for Chemists* – viewed 19 September 2022, <https://www.industry.gov.au/client-services/training-and-assessment>.

[15] Jackson, B & Liba, A 2015, 'Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods' *J. Anal. At. Spectrometry*, vol. 30, pp1179-1183.

[16] JCGM 200:2012, International vocabulary of metrology – Basic and General Concepts and Associated Terms (VIM), 3rd edition.

APPENDIX 1 – SAMPLE PREPARATION, ANALYSIS AND HOMOGENEITY TESTING

Sample Preparation

Sample S1 was prepared from sea water. Approximately 5 L of sea water was filtered through a 0.45 μ m pore size filter, stabilised by adding 2% (v/w) nitric acid and further fortified for 19 elements.

Sample S2 was prepared by filtering 5 L of river water through a 0.45 μ m pore size filter and then stabilised it by adding 2% (v/w) nitric acid and 0.01% (v/w) HCl. The acidified and filtered river water was then further fortified for 19 elements.

Sample Analysis and Homogeneity Testing

With the exception of Al in S1, a partial homogeneity test was conducted for all analytes of interest. Three bottles were analysed in duplicate and the average of the results was reported as the homogeneity value.

Sample Analysis for Dissolved Elements

For analyses of dissolved elements in Samples S1 a test portion of 1 mL was transferred to a 14 mL graduated polypropylene centrifuge tube and diluted to 10 mL with milli-Q water

For analyses of dissolved elements in Sample S2, a test portion of 7.5 mL was transferred to a 14 mL graduated polypropylene centrifuge tube and diluted to 10 mL with milli-Q water.

Testing involved measurements using ICP-MS. The measurement instrument was calibrated using external standards for targeted analytes. A set of quality control samples consisting of blanks, a blank matrix spike, duplicates, sample matrix spikes and control samples (MX014, AQA 20-16 S1 and AQA 21-18 S1) was carried through the same set of procedures and analysed simultaneously with the samples. A summary of the ion/wavelength and instrument conditions used for each analyte is presented in Table 48 for S1 and in Table 49 for S2.

Analyte	Instrument	Internal Standard	Reaction/ Collision Cell	Cell Mode/Gas	Final Dilution Factor	Ion / Wavelength
Ag	ICP-MS	Rh	ORS	He	10	107 m/z
As	ICP-MS	Rh	ORS	He	10	75 m/z
Be	ICP-MS	Rh	ORS	He	10	9 m/z
Cd	ICP-MS	Rh	ORS	He	10	114 m/z
Cr	ICP-MS	Rh	ORS	He	10	52 m/z
Cu	ICP-MS	Rh	ORS	He	10	65 m/z
Fe	ICP-MS	Rh	ORS	He	10	56 m/z
Hg	ICP-MS	Ir	ORS	He	10	202 m/z
Mn	ICP-MS	Rh	ORS	Не	10	55 m/z
Ni	ICP-MS	Rh	ORS	He	10	60 m/z
Р	ICP-MS	Rh	ORS	HEHe	10	31 m/z
Pb	ICP-MS	Ir	ORS	Не	10	208 m/z
Sb	ICP-MS	Rh	ORS	He	10	121 m/z
Se	ICP-MS	Rh	ORS	HEHe	10	78 m/z
Sn	ICP-MS	Rh	ORS	Не	10	118 m/z
Tl	ICP-MS	Rh	ORS	He	10	205 m/z
U	ICP-MS	Ir	ORS	He	10	238 m/z
V	ICP-MS	Rh	ORS	He	10	51 m/z
Zn	ICP-MS	Rh	ORS	Не	10	66 m/z

Table 48 Instrumental Techniques used for Dissolved Elements in S1

Analyte	Instrument	Internal Standard	Reaction/ Collision Cell	Cell Mode/Gas	Final Dilution Factor	Ion / Wavelength
		Standard	Comsion Cen	Mode/Gas	Factor	
Ag	ICP-MS	Rh	ORS	He	1.3	107 m/z
Al	ICP-MS	Rh	ORS	He	1.3	27 m/z
As	ICP-MS	Rh	ORS	He	1.3	75 m/z
Be	ICP-MS	Rh	ORS	He	1.3	9 m/z
Cd	ICP-MS	Rh	ORS	He	1.3	114 m/z
Co	ICP-MS	Rh	ORS	He	1.3	59 m/z
Cr	ICP-MS	Rh	ORS	He	1.3	52 m/z
Cu	ICP-MS	Rh	ORS	He	1.3	65 m/z
Fe	ICP-MS	Rh	ORS	He	1.3	56 m/z
Hg	ICP-MS	Ir	ORS	He	1.3	202 m/z
Mn	ICP-MS	Rh	ORS	He	1.3	55 m/z
Мо	ICP-MS	Rh	ORS	He	1.3	95 m/z
Ni	ICP-MS	Rh	ORS	He	1.3	60 m/z
Pb	ICP-MS	Ir	ORS	He	1.3	208 m/z
Sb	ICP-MS	Rh	ORS	He	1.3	121 m/z
Se	ICP-MS	Rh	ORS	HEHe	1.3	78 m/z
Tl	ICP-MS	Rh	ORS	He	1.3	205 m/z
U	ICP-MS	Ir	ORS	He	1.3	238 m/z
V	ICP-MS	Rh	ORS	He	1.3	51 m/z
Zn	ICP-MS	Rh	ORS	He	1.3	66 m/z

Table 49 Instrumental Techniques used for Dissolved Elements in S2

APPENDIX 2 – ASSIGNED VALUE, Z-SCORE AND E_N SCORE CALCULATION

The assigned value was calculated as the robust average using the procedure described in 'ISO13258:2022, Statistical methods for use in proficiency testing by inter-laboratory comparisons – Annex C'.⁶ The uncertainty was estimated as:

$$u_{rob av} = 1.25 * S_{rob av} / \sqrt{p}$$

Equation 4

where:

u _{rob av}	robust average standard uncertainty
Srob av	robust average standard deviation
р	number of results

The expanded uncertainty $(U_{rob av})$ is the standard uncertainty multiplied by a coverage factor of 2 at approximately 95% confidence level.

A worked example is set out below in Table 50.

No. results (p)	10
Robust Average	42.2 µg/L
$S_{rob\ av}$	4.8 µg/L
<i>u</i> _{rob av}	1.9 μg/L
k	2
Urob av	3.8 μg/L

Table 50 Uncertainty of Assigned Value for Fe in Sample S1

The assigned value for Fe in Sample S1 is $42.2 \pm 3.8 \mu g/L$.

z-Score and En-score

For each participant's result a z-score and E_n -score are calculated according to Equation 2 and Equation 3 respectively (see page 7).

A worked example is set out below in Table 51.

Table 51 z-Score and E_n -score for Fe result reported by Laboratory 2 in S1

Ag Result μg/L	Assigned Value µg/L	Set Target Standard Deviation	z-Score	E _n -Score
41 ± 9	42.2 ± 3.8	15% as CV or 0.15 x 42.2 = = 6.3 μg/L	$z = \frac{(41 - 42.2)}{6.3}$ $z = -0.19$	$En = \frac{(41 - 42.2)}{\sqrt{9^2 + 3.8^2}}$ $E_n = -0.12$

APPENDIX 3 - USING PT DATA FOR UNCERTAINTY ESTIMATION

When a laboratory has successfully participated in at least 6 proficiency testing studies, the standard deviation from proficiency testing studies can also be used to estimate the uncertainty of their measurement results.^{10, 12} Between 2007 and 2022, NMI carried out 31 proficiency tests for metals in water. These studies involved analyses of dissolved or total elements at low and high levels in potable, fresh (river), saline water, ground water and waste water. Laboratory X participated and submitted satisfactory results in 21 of these PTs. This data can be separated into two ranges of results: 0.0005 to 0.01 mg/L and 0.01 to 0.10 mg/L. Results are presented in Tables 52 and 53.

Study No.	Sample	Laboratory result* mg/L	Assigned value mg/L	Robust CV of all results (%)	Number of Results
	Fresh	0.0015 ± 0.0003	0.00100 ± 0.00001	24	15
AQA 11-07	Fresh	0.0039 ± 0.00078	0.00306 ± 0.00016	18	19
	Fresh	0.0039 ± 0.00078	0.00306 ± 0.00016	9.6	19
AQA 12-20	Saline	0.0039 ± 0.0008	0.00370 ± 0.00028	13	19
AQA 13-09	Fresh	0.0044 ± 0.0009	0.00409 ± 0.00017	7.9	15
A O A 12 22	Saline	0.00170 ± 0.00034	0.00165 ± 0.00014	13	14
AQA 13-22	Saline	0.00384 ± 0.00077	0.00378 ± 0.00012	13	14
A O A 15 OC	Sea	0.00180 ± 0.0004	0.00177 ± 0.00021	28	12
AQA 15-06	Sea	0.00172 ± 0.0004	0.00177 ± 0.00021	28	11
AQA 15-18	Surface	0.002 ± 0.0003	0.00196 ± 0.00013	7.8	10
AQA 16-03	Waste	0.0041 ± 0.0008	0.00398 ± 0.00031	8.6	9
AQA 16-15	Sea	0.0070 ± 0.0010	0.00652 ± 0.00038	9.4	16
AQA 17-16	Sea	0.0015 ± 0.0003	0.00143 ± 0.00029	22	10
AQA 18-16	Sea	0.0022 ± 0.0005	0.00206 ± 0.00015	11	14
AQA 19-07	Fresh	0.0018 ± 0.0004	0.00187 ± 0.00009	5.3	10
AQA 19-16	Sea	0.0021 ± 0.0004	0.00168 ± 0.00037	25	8
AQA 20-16	Sea	0.0013 ± 0.0003	0.00178 ± 0.00034	24	10
AQA 21-09	River	0.0007 ± 0.0002	0.000756 ± 0.000059	8.9	8
AQA 21-18	Saline Water	0.0029 ± 0.0006	0.00298 ± 0.00031	13	6
AQA 22-10	Potable	0.007 ± 0.0011	0.00845 ± 0.00036	6.1	13
AQA 22-17	Sea Water	0.0028 ± 0.00056	0.00286 ± 0.00027	12	15
AQA 22-17	River Water	0.0035 ± 0.00027	0.00364 ± 0.00026	10	13
Ave	rage			14**	

Table 52 Laborator	v X Reported	l Results for N	Vi at 0.0005 to	0.01 mg/L Level
	,			

*Expanded uncertainty at approximately 95% confidence. ** The mean value of Robust CV was used.

Study No.	Sample	Laboratory result* mg/L	Assigned value mg/L	Robust CV of all results (%)	Number of Results
A O A 11 17	Waste	0.10 ± 0.009	0.099 ± 0.001	2	15
AQA 11-17	Waste	0.10 ± 0.009	0.098 ± 0.001	2	15
A O A 12 00	Potable	0.047 ± 0.007	0.045 ± 0.002	6.7	19
AQA 12-09	Potable	0.055 ± 0.008	0.053 ± 0.002	7.4	19
AQA 12-20	Saline	0.0415 ± 0.0083	0.0384 ± 0.0021	11	22
AQA 13-09	Fresh	0.0393 ± 0.0040	0.0361 ± 0.0010	4.8	16
AQA 13-09	Fresh	0.0258 ± 0.0030	0.0272 ± 0.0025	15	15
AQA 14-08	Ground	0.019 ± 0.004	0.0191 ± 0.0007	7.9	13
AQA 14-19	Potable	0.019 ± 0.004	0.0183 ± 0.0013	11	14

Study No.	Sample	Laboratory result [*] mg/L	Assigned value mg/L	Robust CV of all results (%)	Number of Results
AQA 15-18	Surface	0.036 ± 0.0035	0.0336 ± 0.0013	5.1	13
AQA 16-03	Waste	0.042 ± 0.0045	0.0352 ± 0.0050	19	11
AQA 16-15	Sea	0.0456 ± 0.0060	0.0409 ± 0.0029	12	17
AQA 17-16	Sea	0.0116 ± 0.0012	0.0101 ± 0.0023	27	9
AQA 18-05	Potable	0.017 ± 0.002	0.0172 ± 0.0010	8.7	16
AQA 18-16	Sea	0.015 ± 0.0030	0.0138 ± 0.0014	15	15
AQA 19-07	Fresh	0.029 ± 0.0035	0.0283 ± 0.0009	4.3	11
AQA 20-07	Potable	0.010 ± 0.002	0.0106 ± 0.0004	6	16
AQA 21-09	Waste	0.014 ± 0.0021	0.0143 ± 0.0006	8.1	21
Average				9.6**	

Table 53 Laboratory X Reported Results for Ni at 0.01 to 0.10 mg/L Level (continued)

*Expanded uncertainty at 95% confidence level. **The mean value of Robust CV was used

Taking the average of the robust CVs over these PT samples for each concentration range gives estimates of the relative standard uncertainty of 14% and 9.6% respectively. Using a coverage factor of two gives relative expanded uncertainties of 28% and 20% respectively, at a level of confidence of 95% level.

Table 54 sets out the expanded uncertainty for results of the measurement of Ni in fresh, saline, waste or potable water over the ranges 0.0005 - 0.01 mg/L and 0.01 - 0.10 mg/L.

Table 54 Uncertainty of Ni results estimated using PT data

Results mg/L	Uncertainty mg/L
0.00050	0.00014
0.00100	0.00028
0.0100	0.0020
0.100	0.020
0.150	0.030

The estimates of 28% and 20% relative passes the test of being reasonable, and the analysis of the thirty-three different PT samples over ten years can be assumed to include all the relevant uncertainty components (different matrices, operators, reagents, calibrators etc.), and so complies with ISO 17025.⁸

APPENDIX 4 - ACRONYMS AND ABBREVIATIONS

APHA	American Public Health Association
CITAC	Cooperation on International Traceability in Analytical Chemistry
CRI	Collision Reaction Interface
CRM	Certified Reference Material
CV	Coefficient of Variation
CV _{rob}	Robust Coefficient of Variation
CVAAS	Cold Vapour Atomic Absorption Spectrometry
CVAFS	Cold Vapour Atomic Fluorescence Spectrometry
DRC	Dynamic Reaction Cell
GFAAS	Graphite Furnace Atomic Absorption Spectrometry
GUM	Guide to the Expression of Uncertainty in Measurement
HEHe	High energy He mode
H.V.	Homogeneity Value
HR-ICP-MS	High Resolution Inductively Coupled Plasma – Mass Spectrometry
IDMS	Isotope Dilution Mass Spectrometry
ICP-MS	Inductively Coupled Plasma – Mass Spectrometry
ICP-MS/MS	Inductively Coupled Plasma – Tandem Mass Spectrometry
ICP-OES	Inductively Coupled Plasma – Optical Emission Spectrometry
ISO/IEC	International Organisation for Standardisation / International Electrotechnical Commission
IUPAC	International Union of Pure and Applied Chemists
KED	Kinetic Energy Discrimination
Max	Maximum value in a set of results
Md	Median
Min	Minimum value in a set of results
MU	Measurement Uncertainty
Ν	Number of Participants
NIST	National Institute of Standards and Technology
NMI	National Measurement Institute (of Australia)
NR	Not Reported
NT	Not Tested
ORS	Octopole Reaction System
PCV	Performance Coefficient of Variation
PT	Proficiency Test
RM	Reference Material
SA-ICP-MS	Standard Addition Inductively Coupled Plasma – Mass Spectrometry
SD _{rob}	Robust Standard Deviation
SI	The International System of Units
SS	Spiked sample
S.V.	Spiked or formulated concentration of a PT sample
s ² sam	Sampling variance
sa/σ	Analytical standard deviation divided by the target standard deviation
Target SD	Target standard deviation (symbol: σ)
UC	Universal Cell
VGA-ICP-OES	Vapour Generation Accessory Inductively Coupled Plasma Optical Emission Spectrometry

APPENDIX 5 - INSTRUMENT DETAILS FOR DISSOLVED ELEMENTS

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			107
2	ICP-MS	In	NA		10	1	107
3	ICP-MS						109
4	ICP-MS	103	ORS	He	1	1	107
6	ICP-MS	Rh	NA	NA	1	1	109
7	ICP-MS	In	ORS	He	1.05	1.05	107
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	107
9	ICP-MS	103 Rh	DRC	He	1	1	m/z 107
10	ICP-MS	Rh	ORS	He	10	NA	107
11	ICP-MS	Rh		He	1	NA	107
12	ICP-MS	Rh	CRI	He	1	1	107
13	ICP-MS						
14	ICP-MS	Y	KED		10	NA	107
15	ICP-MS/MS	Rh103	UC	standard mode	20	NA	107
16	ICP-MS	Rh	KED	He	20	1	109

Table 55 Instrument Conditions Ag

Table 56 Instrument Conditions Al

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			27
2	ICP-OES-AV- buffer	Y	NA		1	1	394.401
3	ICP-MS						27
4	ICP-MS	45	ORS	He	1	1	27
6	ICP-MS	Sc	NA	NA	1	1	27
7	ICP-MS	Ge	ORS	He	1.05	1.05	27
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	27
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 27
10	ICP-OES-AV	Y	NA	NA	NA	2	167.019
11	ICP-MS	Sc		He	1	NA	27
12	ICP-MS	Sc	CRI	He	1	1	27
13	ICP-MS						
14	ICP-MS	Li6		O2	10	NA	27
15	ICP-MS/MS	Sc45	UC	NH3	20	NA	27
16	ICP-MS	Sc	KED	He	20	1	27
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	27

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			75
2	ICP-MS	Ga	CRI	He	10	1	75
3	ICP-MS						75
4	ICP-MS	72	ORS	He	1	1	75
6	ICP-MS	Rh	KED	He	1	1	75
7	ICP-MS	In	ORS	He	1.05	1.05	75
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	75
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 75
10	ICP-MS	Rh	ORS	He	10	10	75
11	ICP-MS	Sc		He	1	NA	75
12	ICP-MS	Rh	CRI	He	1	1	75
13	ICP-MS						
14	ICP-MS	Y		O2	10	NA	75
15	ICP-MS/MS	Rh103	UC	O2	20	NA	91
16	ICP-MS	Те	KED	He	20	1	75
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	75

Table 57 Instrument Conditions As

Table 58 Instrument Conditions Be

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	NA			9
2	ICP-MS	In	NA		10	1	9
3	ICP-MS						9
4	ICP-OES-AV- buffer	Lu			1	1	313.107
6	ICP-MS	Sc	NA	NA	1	1	9
7	ICP-MS	Ge	ORS	He	1.05	1.05	9
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	9
9	ICP-MS	45 Sc	DRC	NA	1	1	m/z 9
10	ICP-MS	Rh	ORS	He	10	NA	9
11	ICP-MS	Sc		standard mode	1	NA	9
12	ICP-MS	Sc	CRI	NA	1	1	9
13	ICP-MS						
14	ICP-MS	Li6	KED		10	NA	9
15	ICP-MS/MS	Sc45	UC	standard mode	20	NA	9
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	9

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			111
2	ICP-MS	In	NA		10	1	111
3	ICP-MS						111
4	ICP-MS	103	ORS	He	1	1	114
6	ICP-MS	Rh	NA	NA	1	1	111
7	ICP-MS	In	ORS	He	1.05	1.05	111
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	111
9	ICP-MS	103 Rh	DRC	Не	1	1	m/z 111
10	ICP-MS	Rh	ORS	He	10	10	111
11	ICP-MS	Rh		He	1	NA	111
12	ICP-MS	Rh	CRI	He	1	1	111
13	ICP-MS						
14	ICP-MS	In	KED		10	NA	111
15	ICP-MS/MS	Rh103	UC	02	20	NA	114
16	ICP-MS	Rh	KED	He	20	1	111

Table 59 Instrument Conditions Cd

Table 60 Instrument Conditions Co

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He	NA		59
2	ICP-MS	In	NA		10	1	59
3	ICP-MS				NA		59
4	ICP-MS	103	ORS	Не	1	1	59
6	ICP-MS	Rh	KED	He	NA	1	59
7	ICP-MS	In	ORS	Не	NA	1.05	59
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	59
9	ICP-MS	45 Sc	DRC	He	NA	1	m/z 59
10	ICP-MS	Rh	ORS	He	NA	10	59
12	ICP-MS	Sc	CRI	He	NA	1	59
13	ICP-MS				NA		
16	ICP-MS	Ga	KED	He	NA	1	59
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			NA	10	59

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			52
2	ICP-MS	Ga	DRC	NH3	10	1	52
3	ICP-MS						52
4	ICP-MS	72	ORS	He	1	1	52
6	ICP-MS	Sc	KED	He	1	1	52
7	ICP-MS	In	ORS	He	1.05	1.05	52
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	52
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 52
10	ICP-MS	Rh	ORS	He	10	10	52
11	ICP-MS	Sc		He	1	NA	52
12	ICP-MS	Sc	CRI	He	1	1	52
13	ICP-MS						
14	ICP-MS	Sc	KED		10	NA	52
15	ICP-MS/MS	Sc45	UC	NH3	20	NA	52
16	ICP-MS	Ga	DRC	NH3	20	1	52
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	52

Table 61 Instrument Conditions Cr

Table 62 Instrument Conditions Cu

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			63
2	ICP-MS		CRI		10	1	63
3	ICP-MS						63
4	ICP-MS	103	ORS	He	1	1	65
6	ICP-MS	Rh	KED	He	1	1	65
7	ICP-MS	In	ORS	He	1.05	1.05	63
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	65
9	ICP-MS	45 Sc	DRC	Не	1	1	m/z 63
10	ICP-MS	Rh	ORS	He	10	10	63
11	ICP-MS	Sc		He	1	NA	63
12	ICP-MS	Sc	CRI	He	1	1	63
13	ICP-MS						
14	ICP-MS	Sc	KED		10	NA	63
15	ICP-MS/MS	Rh103	UC	He	20	NA	65
16	ICP-MS	Ga	KED	He	20	1	63
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	63

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			56
2	ICP-OES-AV- buffer	Y			1	1	239.562
3	ICP-MS						57
4	ICP-MS	72	ORS	He	1	10	56
6	ICP-MS	Sc	KED	He	1	1	56
7	ICP-MS	Ge	ORS	He	1.05	1.05	56
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	57
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 56
10	ICP-OES-AV	Y	NA	NA	2	2	238.204
11	ICP-MS	Sc		He	1	NA	56
12	ICP-MS	Sc	CRI	He	1	1	56
13	ICP-MS						
14	ICP-MS	Sc	KED		10	NA	56
15	ICP-MS/MS	Rh103	UC	NH3	20	NA	54
16	ICP-MS	Ga	DRC	NH3	20	1	54

Table 63 Instrument Conditions Fe

Table 64 Instrument Conditions Hg

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	GFAAS	NA	NA	NA			253.7
2	CVAAS				2	2	253.7nm
3	ICP-MS						201
4	VGA-ICP-OES				1	1	194.164
6	ICP-MS	Ir	NA	NA	1	1	201
7	ICP-MS	Ir	ORS	He	1.05	1.05	202
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	202
9	ICP-MS	175 Lu	DRC	He	1	1	m/z 201
10	CVAAS					2	
11	ICP-MS	Lu		He	1	NA	202
12	ICP-MS	Lu	CRI	He	1	1	201
13	ICP-MS						
14	CVAAS	SnCl2	KED			NA	
15	ICP-MS/MS				20	NA	
16	CVAFS	NA	NA	NA	5	5	NA

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			55
2	ICP-MS		CRI		10	1	55
3	ICP-MS						55
4	ICP-MS	72	ORS	He	1	1	55
6	ICP-MS	Sc	KED	He	1	1	55
7	ICP-MS	Ge	ORS	He	1.05	1.05	55
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	55
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 55
10	ICP-MS	Rh	ORS	He	10	10	55
11	ICP-MS	Sc		He	1	NA	55
12	ICP-MS	Sc	CRI	He	1	1	55
13	ICP-MS						
14	ICP-MS	Sc	KED		10	NA	55
15	ICP-MS/MS	Rh103	UC	NH3	20	NA	55
16	ICP-MS	Sc	KED	He	20	1	55
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	55

Table 65 Instrument Conditions Mn

Table 66 Instrument Conditions Mo

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He	NA		95
2	ICP-MS		NA		10	1	95
3	ICP-MS				NA		95
4	ICP-MS	72	ORS	He	1	1	98
6	ICP-MS	Rh	NA	NA	NA	1	95
7	ICP-MS	Rh	ORS	He	NA	1.05	95
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	98
9	ICP-MS	45 Sc	DRC	He	NA	1	m/z 95
10	ICP-MS	Rh	ORS	He	NA	10	95
12	ICP-MS	Rh	CRI	He	NA	1	95
13	ICP-MS				NA		
16	ICP-MS	Rh	KED	He	NA	1	98
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			NA	10	98

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			60
2	ICP-MS		CRI		10	1	60
3	ICP-MS						60
4	ICP-MS	103	ORS	He	1	1	60
6	ICP-MS	Rh	KED	He	1	1	60
7	ICP-MS	In	ORS	He	1.05	1.05	60
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	60
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 60
10	ICP-MS	Rh	ORS	He	10	10	60
11	ICP-MS	Sc		He	1	NA	60
12	ICP-MS	Sc	CRI	He	1	1	60
13	ICP-MS						
14	ICP-MS	Sc	KED		10	NA	60
15	ICP-MS/MS	Rh103	UC	He	20	NA	60
16	ICP-MS	Ga	KED	He	20	1	60
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	60

Table 67 Instrument Conditions Ni

Table 68 Instrument Conditions P

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-OES-AV	Eu	NA	NA		NA	185.827
2	ICP-OES-AV- buffer	Y			1	NA	214.914
3	ICP-MS					NA	31
6	ICP-MS	Sc	KED	He	1	NA	31
7	ICP-MS	Ge	ORS	He	1.05	NA	31
9	ICP-MS	45 Sc	DRC	HEHe	1	NA	m/z 31
10	ICP-OES-AV	Y	NA	NA	2	NA	213.618
13	ICP-MS					NA	
14	ICP-OES-AV	Yb	KED		50	NA	213nm
15	ICP-MS/MS	ScO61	UC	O2	20	NA	47

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			208
2	ICP-MS		NA		10	1	208
3	ICP-MS						208
4	ICP-MS	193	ORS	He	1	1	208
6	ICP-MS	Ir	NA	NA	1	1	206+207+208
7	ICP-MS	Ir	ORS	He	1.05	1.05	208
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	206,207,208
9	ICP-MS	89 Y	DRC	Не	1	1	m/z 208
10	ICP-MS	Ir	ORS	He	10	10	208
11	ICP-MS	Lu		He	1	NA	208
12	ICP-MS	Lu	CRI	He	1	1	208
13	ICP-MS						
14	ICP-MS	Ir	KED		10	NA	206
15	ICP-MS/MS	Ir193	UC	standard mode	20	NA	208
16	ICP-MS	Tb	KED	Не	20	1	206+207+208
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	208

Table 69 Instrument Conditions Pb

Table 70 Instrument Conditions Sb

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			121
2	ICP-MS		NA		10	1	121
3	ICP-MS						121
4	ICP-MS	72	ORS	He	1	1	121
6	ICP-MS	Rh	NA	NA	1	1	121
7	ICP-MS	In	ORS	He	1.05	1.05	121
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	121
9	ICP-MS	89 Y	DRC	He	1	1	m/z 121
10	ICP-MS	Rh	ORS	He	NA	10	121
11	ICP-MS	Rh		He	1	NA	121
12	ICP-MS	Rh	CRI	He	1	1	123
13	ICP-MS						
14	ICP-MS	In	KED		10	NA	121
15	ICP-MS/MS	Rh103	UC	standard mode	20	NA	121
16	ICP-MS	Rh	KED	He	20	1	121
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	121

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	HEHe			78
2	ICP-MS		CRI		10	1	82
3	ICP-MS						82
4	ICP-MS	103	ORS	He	1	1	78
6	ICP-MS	Rh	DRC	NH3	1	1	82
7	ICP-MS	In	ORS	H2	1.05	1.05	78
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	82
9	ICP-MS	45 Sc	DRC	HEHe	1	1	m/z 78
10	ICP-MS	Rh	ORS	HEHe	10	10	77
11	ICP-MS	Sc		HEHe	1	NA	78
12	ICP-MS	Sc	CRI	He	1	1	78
13	ICP-MS						
14	ICP-MS	Y	KED		10	NA	78
15	ICP-MS/MS	Rh103	UC	02	20	NA	96
16	ICP-MS	Te	DRC	NH3	20	1	82

Table 71 Instrument Conditions Se

Table 72 Instrument Conditions Sn

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He		NA	118
2	ICP-MS		NA		10	NA	118
3	ICP-MS					NA	118
4	ICP-MS	115	ORS	He	1	1	118
7	ICP-MS	Ir	ORS	He	1.05	NA	118
9	ICP-MS	89 Y	DRC	He	1	NA	m/z 118
10	ICP-MS	Rh	ORS	He	10	10	118
11	ICP-MS	Rh		He	1	NA	118
12	ICP-MS	Rh	CRI	He	1	NA	118
13	ICP-MS					NA	
14	ICP-MS	In	KED		10	NA	118
15	ICP-MS/MS	Rh103	UC	standard mode	20	NA	118
16	ICP-MS	Rh	KED	He	20	NA	120

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			205
2	ICP-MS		NA		10	1	203
3	ICP-MS						205
4	ICP-MS	193	ORS	He	1	1	205
6	ICP-MS	Ir	NA	NA	1	1	205
7	ICP-MS	Ir	ORS	He	1.05	1.05	205
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	203
9	ICP-MS	89 Y	DRC	He	1	1	m/z 205
10	ICP-MS	Ir	ORS	He	10	NA	205
11	ICP-MS	Lu		He	1	NA	205
12	ICP-MS	Lu	CRI	He	1	1	205
13	ICP-MS						
14	ICP-MS	Ir	KED		10	NA	205
15	ICP-MS/MS	Ir193	UC	standard mode	20	NA	205
16	ICP-MS	Tb	KED	He	20	1	205
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	205

Table 73 Instrument Conditions Tl

Table 74 Instrument Conditions U

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			238
2	ICP-MS		NA		10	1	238
3	ICP-MS						238
4	ICP-MS	193	ORS	He	1	1	238
6	ICP-MS	Ir	NA	NA	1	1	238
7	ICP-MS	Ir	ORS	He	1.05	1.05	238
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	238
9	ICP-MS	89 Y	DRC	Не	1	1	m/z 238
11	ICP-MS	Lu		He	1	NA	238
12	ICP-MS	Lu	CRI	He	1	1	238
13	ICP-MS						
14	ICP-MS	Ir		02	10	NA	238
15	ICP-MS/MS	Ir193	UC	standard mode	20	NA	238
16	ICP-MS	Tb	KED	He	20	1	238
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	238

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			51
2	ICP-MS		DRC	NH3	10	1	51
3	ICP-MS						51
4	ICP-MS	45	ORS	He	1	1	51
6	ICP-MS	Sc	KED	He	1	1	51
7	ICP-MS	Ge	ORS	He	1.05	1.05	51
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	51
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 51
10	ICP-MS	Rh	ORS	He	10	10	51
11	ICP-MS	Sc		He	1	NA	51
12	ICP-MS	Sc	CRI	He	1	1	51
13	ICP-MS						
14	ICP-MS	Sc		02	10	NA	51
15	ICP-MS/MS	Sc45	UC	NH3	20	NA	51
16	ICP-MS	Sc	DRC	NH3	20	1	51
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	51

Table 75 Instrument Conditions V

Table 76 Instrument Conditions Zn

Laboratory Code	Instrument	Internal standard	Reaction Cell	Reaction Gas	S1 Final Dilution Factor	S2 Final Dilution Factor	Wavelength (nm)/ Ion(m/z)/ Absorbance(nm)
1	ICP-MS	Sc, Ir, Rh	ORS	He			66
2	ICP-MS		CRI		10	1	66
3	ICP-MS						66
4	ICP-MS	115	ORS	He	1	1	66
6	ICP-MS	Rh	KED	He	1	1	66
7	ICP-MS	In	ORS	He	1.05	1.05	66
8	ICP-MS	Y, Ce, Ga, Ge, Ph, Ir, Ho, Sc	NA	Не	NA	10	66
9	ICP-MS	45 Sc	DRC	He	1	1	m/z 66
10	ICP-MS	Rh	ORS	He	10	10	66
11	ICP-MS	Sc		He	1	NA	66
12	ICP-MS	Sc	CRI	He	1	1	66
13	ICP-MS						
14	ICP-MS	Y	KED		10	NA	66
15	ICP-MS/MS	Rh103	UC	NH3	20	NA	66
16	ICP-MS	Те	KED	He	20	1	66
18	ICP-MS	Virtual Internal Standard (Sc, Y, Rh, In, Tb, Bi, Th)			10	10	66

END OF REPORT