

Australian Government

Department of Industry, Science and Resources

National Measurement Institute

36 Bradfield Road, West Lindfield NSW 2070

Certificate of Approval NMI 14/3/46

Issued by the Chief Metrologist under Regulation 60 of the National Measurement Regulations 1999

This is to certify that an approval for use for trade has been granted in respect of the instruments herein described.

ABB AquaMaster4 Model Water Meter

submitted by ABB Limited Oldends Lane Stonehouse Gloucestershire GL10 3TA United Kingdom

NOTE: This Certificate relates to the suitability of the pattern of the instrument for use for trade only in respect of its metrological characteristics. This Certificate does not constitute or imply any guarantee of compliance by the manufacturer or any other person with any requirements regarding safety.

This approval has been granted with reference to document NMI R 49-1 Water Meters Intended for the Metering of Cold Potable Water and Hot Water, *Part 1 Metrological and Technical Requirements*, dated May 2022 and NMI M 10-1 Meters Intended for the Metering of Water in Full Flowing Pipes, *Part 1 Metrological and Technical Requirements*, dated July 2010.

This approval is subject to review at the decision of the Chief Metrologist in accordance with the conditions specified in the document NMI P 106.

Rev	Reason/Details	Date
0	Pattern & Variants 1, 2 & 3 approved – certificate issued	03/10/19
1	Pattern & Variants 1 to 3 reviewed (various), Variants 4 to 7 approved – certificate issued	25/03/22
2	Pattern amended (software versions) – certificate issued	24/10/22

DOCUMENT HISTORY

		1.01 0
Rev	Reason/Details	Date
3	Pattern & Variant 1 amended (model numbers and software versions), Variants 4 & 5 amended (meter size and flowrate) – certificate issued	15/03/24

CONDITIONS OF APPROVAL

General

Instruments purporting to comply with this approval shall be marked with pattern approval number 'NMI 14/3/46' and only by persons authorised by the submittor.

It is the submittor's responsibility to ensure that all instruments marked with this approval number are constructed as described in the documentation lodged with the National Measurement Institute (NMI) and with the relevant Certificate of Approval and Technical Schedule. Failure to comply with this Condition may attract penalties under Section 19B of the National Measurement Act and may result in cancellation or withdrawal of the approval, in accordance with document NMI P 106.

Signed by a person authorised by the Chief Metrologist to exercise their powers under Regulation 60 of the *National Measurement Regulations 1999*.

Darryl Hines Manager Policy and Regulatory Services

1. Description of Pattern

approved on 03/10/19 amended on 25/03/22 amended on 24/10/22 amended on 15/03/24

An ABB AquaMaster4 DN40 water meter intended for the metering of cold potable and non-potable water.

1.1 Field of Operation

The field of operation of the measuring system using the ABB AquaMaster4 DN40 model water meter is determined by the following characteristics:

Minimum flow rate, Q1	0.0625 m³/h
Transition flow rate, Q2	0.10 m³/h
Maximum continuous flow rate, Q3:	25.00 m³/h
Overload flow rate, Q4	31.25 m³/h
Flow rate ratio, Q ₃ /Q ₁ :	400
Maximum admissible water temperature:	50 °C
Temperature Class:	T50
Ambient air temperature range:	-25 °C to +55 °C
Maximum admissible pressure:	1600 kPa
Pressure loss class:	Δp40
Accuracy class:	1, 2 or 2.5
Flow profile sensitivity class:	U0/D0 – see table 1
Electromagnetic class:	E1 (residential) or E2 (industrial)
Environmental class:	B or O (indoor & outdoor)
Orientation:	All positions
Flow Direction:	Forward/reverse
Power supply:	Battery powered: 2 x 3.6 V (operating range: 2.9 – 3.6 V)

1.2 Features/Functions

The ABB AquaMaster4 DN40 model water meter (Figure 1 and 2) consists of a reduced bore, rubber lined ABB electromagnetic flow sensor (FEW411.R) connected to an ABB AquaMaster4 model signal transmitter (FET411).

Note: See Variant 1 for more information and options regarding the model designations and configurations of the flow sensor and signal transmitter. Software variants (clause 1.4) were additionally introduced with reduced interface functionality and removal of pressure measurement options.

Connection type: Flanged

Display: The signal transmitter incorporates an electronic calculator and indicating device (Figure 2) capable of providing a maximum display of 999 999 999 m³. The indicating device incorporates a programmable decimal point position, allowing the maximum display to be adjusted based upon the value of Q₃. In all cases the value of the maximum display shall comply with the requirements of NMI R 49-1. The indicating device can be switched to display in litres (L), allowing for a verification scale interval of 0.01 L.

Communications⁽¹⁾: Pulse, RS485, RTU Modbus, Sensus protocol

Materials: Flow sensor: Epoxy coated stainless steel

Flow converter: Polymer material

Meter length: 200 mm

⁽¹⁾ The pattern and variants may be fitted and/or configured with the communication options listed in this Certificate. However, the primary indication of volume displayed by the indicating device of the meter is the approved indication of volume.

1.3 Conditions

1.3.1 Installation Conditions

No flow straightener or flow conditioner is required.

For accuracy class 1 and 2, the flow profile sensitivity class is U0/D0.

For accuracy class 2.5, the installation conditions are specified in Table 1.

Table 1 Minimum pipe lengths required by flow disturbance type

Flow Sensor	Disturbance Type (*)	Minimum number of upstream pipe lengths (DN)	Minimum number of downstream pipe lengths (DN)
	1	0	0
FEW4XY.R	2	0	0
	3	0	0

(*) For information on the different types of flow disturbances which are examined as part of pattern approval, refer to NMI M 10-2.

1.3.2 Specified Installations and Open Channel Emplacements (Accuracy Class 2.5)

The meter (pattern and variants) has not been tested or evaluated for performance in specified installations or open channel emplacements as part of this approval.

More information regarding specified installation and open channel emplacement testing may be found in NMI M 10-1 and NMI M 10-2.

1.3.3 Water Quality

The meter is approved for use in the metering of potable water supplies.

The meter is approved for use in the metering of non-potable water supplies.

The meter is approved for use in water with conductivity > 50 μ S/cm

1.4 Software Version

The Pattern and Variants are approved with the software versions specified in Table 2 below.

Software Part Code	Software version	Checksum	Remarks
3KXF004476U0113	01.00.15	0xBD1C4895	NA
	03.00.03	B26AFE6B	Full functionality
	03.00.04	6E98963A	Full functionality
	03.02.00	E12E5C04	Full functionality
	03.03.02	D4D1E40B	Full functionality
3KXF208402U0113	03.03.03	CEEF45F1	Full functionality
	03.03.06	DAC51328	Improvements to electrode resistance calculations.
	03.04.00	277BA336	Improvements to sensor diagnostics.
3KXE208402110313	02.00.02	84EBD1C8	Reduced functionality without pressure measurement, logger or Sensus communications.
51001 20040200013	02.00.03	D93FDB0F	Reduced functionality as above. Improvements to electrode resistance calculations
	02.00.01	C28EAA16	Reduced functionality without pressure measurement, Modbus communications.
3KXF208402U0513	02.00.02	9F333FBC	Reduced functionality as above. Improvements to electrode resistance calculations

Table 2 Software Versions

1.5 Verification Provision

Provision is made for the application of a verification mark.

1.6 Sealing Provision

1.6.1 Software

To prevent unauthorised modification of any legally relevant metrological parameter the transmitter must be put into "metrological read-only" mode, via the activation of the "read-only" switch (Figure 3). A suitable anti-tamper seal shall be fitted (Figure 4) such that, in the event of unauthorized tampering, it is clearly evident that the fitted legal metrology seal has been broken.

The physical memory within both the transmitter and sensor are buried with potting such that attempts to swap the memory would result in evidence of damage to the meter.

1.6.2 Hardware

The flow sensor is sealed to the transmitter via the application of physical seals such that any attempts to access metrologically significant components is made clearly evident.

1.7 Descriptive Markings and Notices

Instruments are marked with the following data, either grouped or distributed on the casing, the indicating device dial or an identification plate (Figure 5):

Manufacturer's name or mark	
Serial number	
Pattern approval number	NMI 14/3/46
Numerical value of maximum continuous flow rate, Qa	3
Flow rate ratio, Q ₃ /Q ₁	
Unit of measurement	m ³
Temperature class ⁽¹⁾	T50
Maximum admissible pressure ⁽²⁾	1600 kPa
Maximum pressure loss ⁽³⁾	40 kPa or Δp40
Orientation (4)	
Flow profile sensitive class ⁽⁵⁾	U0/D0
Direction of flow	\rightarrow or similar
Accuracy class ⁽⁶⁾	1, 2 or 2.5
⁽¹⁾ Optional for Class T30	

⁽²⁾ Optional for meters with MAP of 1400 kPa or 600 kPa for DN \ge 500

- ⁽³⁾ Optional for Class Δp 63
- ⁽⁴⁾ Optional for meters approved for all orientations
- ⁽⁵⁾ Optional for U0/D0 meters
- ⁽⁶⁾ Optional for class 2 meters

For instruments that incorporate electronic devices, the following information can either be physically marked on the instrument or provided electronically via the indicating device or similar means:

Electromagnetic class	E1 or E2
Environmental class	B or O
For meters with an external power supply	the voltage and frequency
For battery powered meters	a replacement date or similar indication of expected battery life

2. Description of Variant 1

approved on 03/10/19 amended on 25/03/22 amended on 15/03/24

The Pattern and Variants are approved in both compact and remote arrangements (Figure 6).

The model designation of the ABB electromagnetic flow sensor is FEW4XY.Z.

Where: X is either: 1 (standard) or 3 (advanced)

Y is either: 1 (compact), 2 (remote) or 8 (remote sensor)

Z is either: R (reduced bore, rubber lined), V (virtual full bore, polypropylene lined) or F (full bore, elastomer lined).

The model designation of the ABB AquaMaster4 signal transmitter is FET4XY.

Where: X is either: 1 (standard) or 3 (advanced)

Y is either: 1 (compact), 2 (remote) or 8 (remote transmitter)

In the compact arrangement, the signal transmitter is connected to the flow sensor as an integral unit.

In the remote arrangement, the flow sensor and signal transmitter are housed separately and connected via a cable with a maximum length of 150 metres. The remote arrangement incorporates alternative physical seals (Figure 7).

In the remote arrangement components that are described with either the model designations of 2 (remote) or 8 (remote sensor/transmitter) are identical except for the model number.

3. Description of Variant 2

approved on 03/10/19 amended on 25/03/22

The Pattern and Variants are approved with the battery/renewable energy powered FEW4XY.R (reduced bore, rubber lined) flow sensor (Figure 8) with the different sensor sizes, accuracy classes, flowrates and associated characteristics as specified in Tables 3 to 6.

Flow sensor size	Accuracy class	Q ₁ (m³/h)	Q ₂ (m ³ /h)	Q ₃ (m³/h)	Q₄ (m³/h)	Ratio Q ₃ /Q ₁
	1 & 2	0.0625	0.1	25	31.25	400
DIN40	2.5	0.1	-	25	31.25	250
DNEO	1 & 2	0.1	0.16	40	50	400
DINOU	2.5	0.16	-	40	50	250
	1	0.39375	0.63	63	78.75	160
DN65	2	0.1575	0.252	63	78.75	400
	2.5	0.252	-	63	78.75	250
	1	0.625	1.0	100	125	160
DN80	2	0.25	0.4	100	125	400
	2.5	0.4	-	100	125	250
	1	1.0	1.6	160	200	160
DN100	2	0.4	0.64	160	200	400
	2.5	0.64	-	160	200	250
	1	1.0	1.6	160	200	160
DN125	2	0.4	0.64	160	200	400
	2.5	0.64	-	160	200	250

Table 3 Reduced bore flow sensor – battery/renewable energy powered

Flow sensor size	Accuracy class	Q ₁ (m³/h)	Q ₂ (m³/h)	Q₃ (m³/h)	Q₄ (m³/h)	Ratio Q ₃ /Q ₁
	1 & 2	1.0	1.6	400	500	400
DINTSU	2.5	1.6	-	400	500	250
DNDOO	1 & 2	1.575	2.52	630	787.5	400
DINZUU	2.5	2.52	-	630	787.5	250
	1	6.25	10	1000	1250	160
DN250	2	2.5	4	1000	1250	400
	2.5	4	-	1000	1250	250
	1	10	16	1600	2000	160
DN300	2	4	6.4	1600	2000	400
	2.5	6.4	-	1600	2000	250
	1	10	16	1600	2000	160
DN350	2	4	6.4	1600	2000	400
	2.5	6.4	-	1600	2000	250
	1	15.625	25	2500	3125	160
DN400	2	12.5	20	2500	3125	200
	2.5	20	-	2500	3125	125
	1	15.625	25	2500	3125	160
DN450	2	12.5	20	2500	3125	200
	2.5	20	-	2500	3125	125

Table 4 Reduced bore flow sensor – battery/renewable energy powered

Flow sensor size	Accuracy class	Q ₁ (m³/h)	Q ₂ (m³/h)	Q ₃ (m³/h)	Q₄ (m³/h)	Ratio Q₃/Q₁
DN500	1	100	160	4000	5000	40
	2	40	64	4000	5000	100
	2.5	63.5	-	4000	5000	63
	1	157.5	252	6300	7875	40
DN600	2	63	100.8	6300	7875	100
	2.5	100	-	6300	7875	63

Table 5 Reduced bore flow sensor – battery/renewable energy powered

Alternative flowrate values may be selected under the following conditions:

- Values of Q₃ shall not be greater that those specified in Tables 3, 4 & 5;
- Values of Q₁ shall not be less than those specified in Tables 3, 4 & 5;
- The ratio Q₄/Q₃ shall be 1.25;
- For accuracy class 1 and 2, the ratio of Q₂/Q₁ shall be 1.6;
- For accuracy class 1 and 2, the ratio of Q₃/Q₁ shall be not less than 40 and shall be selected as per clause 4.1.4 of NMI R 49-1; and
- For accuracy class 2.5, the ratio of Q₃/Q₁ shall be selected as per clause 3.1 of NMI M 10-1.

The Pattern and Variants incorporating the battery/renewable energy powered FEW4XY.R flow sensor have the following installation conditions:

- No flow straightener or flow conditioner is required.
- For accuracy class 1 and 2, the flow profile sensitivity class is U0/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 1 (see 1.3.1. above).

The Pattern and Variants incorporating the battery/renewable energy powered FEW4XY.R flow sensor have the following power supply options:

- Renewable energy power (DC powered): 6 32 V
- Battery power: 2 x 3.6 V (operating range: 2.9 V 3.6 V)

The Pattern and Variants are approved with the following pressure loss classes based upon flow sensor size and type:

Reduced bore:

- For sizes DN40 and DN50:Δp40 (40 kPa)
- For sizes DN65 to DN600: Δp63 (63 kPa)

Flow sensor size	Meter length (mm)	Verification scale interval (m³)
DN40 & DN50	200	0.0001
DN65	200	
DN80	200	0.001
DN100 & DN125	250	0.001
DN150	300	
DN200	350	
DN250	450	
DN300	500	0.04
DN350	550	0.01
DN400	600	
DN450	700	
DN500	770	0.1
DN600	920	0.1

Table 6 Flow sensor sizes, length and verification scale interval

4. Description of Variant 3

approved on 03/10/19 amended on 25/03/22

The Pattern and Variants are approved with the AC mains powered FEW4XY.R (reduce bore, rubber lined) flow sensor, with the different sensor sizes, accuracy classes, flowrates and associated characteristics as specified in Tables 7 to 9.

AC mains power supply: 85-240 VAC @ 50/60 Hz (with internal battery back-up)

Flow sensor size	Accuracy class	Q ₁ (m ³ /h)	Q ₂ (m ³ /h)	Q ₃ (m ³ /h)	Q₄ (m³/h)	Ratio Q ₃ /Q ₁
	1	0.05	0.08	25	31.25	500
DN40	2	0.025	0.04	25	31.25	1000
	2.5	0.04	-	25	31.25	630
	1	0.08	0.128	40	50	500
DN50	2	0.04	0.064	40	50	1000
	2.5	0.063	-	40	50	630
DNGE	1 & 2	0.063	0.1008	63	78.75	1000
DINOS	2.5	0.1	-	63	78.75	630
	1 & 2	0.1	0.16	100	125	1000
DINOU	2.5	0.159	-	100	125	630
	1	0.32	0.512	160	200	500
DN100	2	0.16	0.256	160	200	1000
	2.5	0.254	-	160	200	630
	1	0.32	0.512	160	200	500
DN125	2	0.16	0.256	160	200	1000
	2.5	0.254	-	160	200	630
	1 & 2	0.4	0.64	400	500	1000
DINTOU	2.5	0.63	-	400	500	630
	1 & 2	0.63	1.008	630	787.5	1000
DN200	2.5	1.0	-	630	787.5	630

Table 7 Reduced bore	flow sensor - AC	mains powered
----------------------	------------------	---------------

Flow sensor size	Accuracy class	Q₁ (m³/h)	Q ₂ (m³/h)	Q₃ (m³/h)	Q₄ (m³/h)	Ratio Q ₃ /Q ₁
	1	2.0	3.2	1000	1250	500
DN250	2	1.0	1.6	1000	1250	1000
	2.5	1.59	-	1000	1250	630
	1	3.2	5.12	1600	2000	500
DN300	2	1.6	2.56	1600	2000	1000
	2.5	2.54	-	1600	2000	630
	1	3.2	5.12	1600	2000	500
DN350	2	1.6	2.56	1600	2000	1000
	2.5	2.54	-	1600	2000	630
	1 & 2	5.0	8.0	2500	3125	500
DIN400	2.5	7.94	-	2500	3125	315
	1 & 2	5.0	8.0	2500	3125	500
DIN450	2.5	7.94	-	2500	3125	315
	1	8.0	12.8	4000	5000	500
DN500	2	4.0	6.4	4000	5000	1000
	2.5	6.35	-	4000	5000	630
	1	12.6	20.16	6300	7875	500
DN600	2	6.3	10.08	6300	7875	1000
	2.5	10.0	-	6300	7875	630

Table 8 Reduced bore flow sensor – AC mains powered

Alternative flowrate values may be selected under the following conditions:

- Values of Q_3 shall not be greater that those specified in Tables 7 & 8;
- Values of Q₁ shall not be less than those specified in Tables 7 & 8;
- The ratio Q_4/Q_3 shall be 1.25;
- For accuracy class 1 and 2, the ratio of Q₂/Q₁ shall be 1.6;
- For accuracy class 1 and 2, the ratio of Q₃/Q₁ shall be not less than 40 and shall be selected as per clause 4.1.4 of NMI R 49-1; and
- For accuracy class 2.5, the ratio of Q_3/Q_1 shall be selected as per clause 3.1 of NMI M 10-1.

- No flow straightener or flow conditioner is required.
- For accuracy class 1 and 2, the flow profile sensitivity class is U0/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 1 (see 1.3.1. above).

The Pattern and Variants are approved with the following pressure loss classes based upon flow sensor size and type:

Reduced bore:

- For sizes DN40 and DN50: Δp40 (40 kPa)
- For sizes DN65 to DN600: Δp63 (63 kPa)

Flow sensor size (mm)		Verification scale interval (m ³)
DN40 & DN50	200	
DN65 200		0.0001
DN80	200	
DN100 & DN125	250	
DN150	300	0.001
DN200	350	0.001
DN250	450	
DN300	500	
DN350	550	
DN400	600	0.01
DN450	700	0.01
DN500	770	
DN600	920	

Table 9 Flow sensor sizes, length and verification scale interval

5. Description of Variant 4

approved on 03/10/19 amended on 25/03/22 amended 15/03/24

The Pattern and Variants are approved with the following alternative battery/renewable energy powered flow sensors:

- AquaMaster4 FEW4XY.V (virtual full bore, polypropylene lined) (Figure 9)
- AquaMaster4 FEW4XY.F (full bore, elastomer lined) (Figure 10)

with the sensor sizes, accuracy classes, flowrates and associated characteristics as specified in Tables 10 to 15.

Table 10 (Virtual) full bore flow sensor – battery/renewable energy powered

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
	1	0.32	0.512	40	50	125
DN40	2	0.16	0.256	40	50	250
	2.5	0.25	-	40	50	160
	1	0.504	0.8064	63	78.75	125
DN50	2	0.252	0.4032	63	78.75	250
	2.5	0.394	-	63	78.75	160
	1 & 2	0.4	0.64	100	125	250
DINOS	2.5	0.625	-	100	125	160
	1 & 2	0.64	1.024	160	200	250
DINOU	2.5	1.0	-	160	200	160
	1 & 2	1.0	1.6	250	312.5	250
DIVIOU	2.5	1.56	-	250	312.5	160
	1 & 2	1.0	1.6	250	312.5	250
DN125	2.5	1.56	-	250	312.5	160
	1	5.04	8.064	630	787.5	125
DN150	2	2.52	4.032	630	787.5	250
	2.5	3.94	-	630	787.5	160

Table II (Thadi) fan bere new center battery/fenewable energy perferea
--

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
	1	8.0	12.8	1000	1250	125
DN200	2	4.0	6.4	1000	1250	250
	2.5	6.25	-	1000	1250	160
	1	12.8	20.48	1600	2000	125
DN250	2	6.4	10.24	1600	2000	250
	2.5	10	-	1600	2000	160
	1	20	32	2500	3125	125
DN300	2	10	16	2500	3125	250
	2.5	15.625	-	2500	3125	160
	1 & 2	16	25.6	4000	5000	250
DN350	2.5	25	-	4000	5000	160
	1 & 2	16	25.6	4000	5000	250
DIN400	2.5	25	-	4000	5000	160
	1 & 2	25.2	40.32	6300	7875	250
DIN450	2.5	39.375	-	6300	7875	160
	1 & 2	25.2	40.32	6300	7875	250
DNSUU	2.5	39.375	-	6300	7875	160
	1	78.75	126	6300	7875	250
DN600	2	39.375	63	6300	7875	250
	2.5	63	-	6300	7875	100
	1	200	320	10,000	12,500	50
DN700	2	100	160	10,000	12,500	100
	2.5	158.7	-	10,000	12,500	63

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m ³ /h)	Ratio Q3/Q1
	1	200	320	10,000	12,500	50
DN750	2	100	160	10,000	12,500	100
	2.5	158.7	-	10,000	12,500	63
	1	200	320	10,000	12,500	50
DN800	2	100	160	10,000	12,500	100
	2.5	158.7	-	10,000	12,500	63
	2	158.7	254	10,000	12,500	63
DN900	2.5	250	-	10,000	12,500	40
	2	160	250	16,000	20,000	100
DIVIOUO	2.5	253.97	-	16,000	20,000	63
	2	160	250	16,000	20,000	100
DINT050	2.5	253.97	-	16,000	20,000	63
	2	254	406.4	16,000	20,000	63
DINTIOU	2.5	400	-	16,000	20,000	40
	2	254	406.4	16,000	20,000	63
DINIZOO	2.5	400	-	16,000	20,000	40
DN1350	2	400	640	16,000	20,000	40
DIVISO	2.5	400	-	16,000	20,000	40
	2	400	640	16,000	20,000	40
DN 1400	2.5	400	-	16,000	20,000	40
DN1500	2	400	640	16,000	20,000	40
DN1500	2.5	400	-	16,000	20,000	40
	2	400	640	16,000	20,000	40
	2.5	400	-	16,000	20,000	40
DN1650	2	400	640	16,000	20,000	40
0101030	2.5	400	-	16,000	20,000	40

Table 12 (Virtual) full bore flow sensor – battery/renewable energy powered

Alternative flowrate values may be selected under the following conditions:

- Values of Q₃ shall not be greater that those specified in Tables 10, 11 & 12;
- Values of Q1 shall not be less than those specified in Tables 10, 11 & 12;
- The ratio Q₄/Q₃ shall be 1.25;
- For accuracy class 1 and 2, the ratio of Q₂/Q₁ shall be 1.6;
- For accuracy class 1 and 2, the ratio of Q₃/Q₁ shall be not less than 40 and shall be selected as per clause 4.1.4 of NMI R 49-1; and
- For accuracy class 2.5, the ratio of Q₃/Q₁ shall be selected as per clause 3.1 of NMI M 10-1.

The Pattern and Variants incorporating the FEW4XY.V flow sensor have the following installation conditions:

- No flow straightener or flow conditioner is required.
- For accuracy class 1 and 2, the flow profile sensitivity class is U0/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 13.

Table 13 Minimum pipe lengths required by flow disturbance type

Flow Sensor	Disturbance Type (*)	Minimum number of upstream pipe lengths (DN)	Minimum number of downstream pipe lengths (DN)
	1	0	0
FEW4XY.V	2	0	0
	3	0	0

(*) For information on the different types of flow disturbances which are examined as part of pattern approval, refer to NMI M 10-2.

The Pattern and Variants incorporating the FEW4XY.F flow sensor have the following installation conditions:

- No flow straightener or flow conditioner is required.
- For accuracy class 1 and 2, the flow profile sensitivity class is U3/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 14.

Table 14 Minimum pipe lengths required by flow disturbance type

Flow Sensor	Disturbance Type (*)	Minimum number of upstream pipe lengths (DN)	Minimum number of downstream pipe lengths (DN)
	1	3	0
FEW4XY.F	2	3	0
	3	3	0

(*) For information on the different types of flow disturbances which are examined as part of pattern approval, refer to NMI M 10-2.

- Renewable energy power (DC powered): 6 32 V
- Battery power: 2 x 3.6 V (operating range: 2.9 V 3.6 V)

The Pattern and Variants are approved with the following pressure loss classes based upon flow sensor size and type:

(Virtual) full bore:

- For sizes DN40 and DN50: Δp10 (10 kPa)
- For sizes DN65 to DN200: Δp16 (16 kPa)
- For sizes DN250 to DN1650: Δp10 (10 kPa)

Flow sensor size	Meter length (mm)	Verification scale interval (m ³)
DN40 & DN50	200	
DN65	200	0.001
DN80	200	0.001
DN100 & DN125	250	
DN150	300	
DN200	350	
DN250	450	
DN300	500	0.01
DN350	550	0.01
DN400	600	
DN450	600	
DN500	600	
DN600	800	
DN700	700	0.1
DN750	762	0.1
DN800	800	
DN900	900	
DN1000	1000	
DN1050	1067	
DN1100	1118	
DN1200	1200	1
DN1350	1350]
DN1400	1400	
DN1500	1524	
DN1600	1600	
DN1650	1650	

Table 15 Flow sensor sizes, length and verification scale interval

6. Description of Variant 5

approved on 25/03/22 amended on 15/03/24

The Pattern and Variants are approved with the following alternative AC mains powered flow sensors:

- AquaMaster4 FEW4XY.V (virtual full bore, polypropylene lined)
- AquaMaster4 FEW4XY.F (full bore, elastomer lined)

with the sensor sizes, accuracy classes, flowrates and associated characteristics as specified in Tables 16 to 22.

AC mains power supply: 85-240 VAC @ 50/60 Hz (with internal battery back-up)

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
	1 & 2	0.08	0.128	40	50	500
DIN40	2.5	0.127	-	40	50	315
	1 & 2	0.126	0.2016	63	78.75	500
DINSU	2.5	0.2	-	63	78.75	315
DNG5	1 & 2	0.2	0.32	100	125	500
DINOS	2.5	0.32	-	100	125	315
	1 & 2	0.32	0.512	160	200	500
DINOU	2.5	0.508	-	160	200	315
	1 & 2	0.5	0.8	250	312.5	500
DIVIOU	2.5	0.79	-	250	312.5	315
DN125	1 & 2	0.5	0.8	250	312.5	500
DIVIZO	2.5	0.79	-	250	312.5	315
	1	2.52	4.032	630	787.5	250
DN150	2	1.26	2.016	630	787.5	500
	2.5	2.0	-	630	787.5	315
	1	4.0	6.4	1000	1250	250
DN200	2	2.0	3.2	1000	1250	500
	2.5	3.17	-	1000	1250	315

Table 16 (Virtual) full bore flow sensor – AC mains powered

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
	1	6.4	10.24	1600	2000	250
DN250	2	3.2	5.12	1600	2000	500
	2.5	5.08	-	1600	2000	315
	1	10	16	2500	3125	250
DN300	2	5.0	8.0	2500	3125	500
	2.5	7.94	-	2500	3125	315
	1 & 2	40	64	4000	5000	100
DN350	2.5	63.49	-	4000	5000	63
	1 & 2	40	64	4000	5000	100
DIN400	2.5	63.49	-	4000	5000	63
DNUES	1 & 2	63	100.8	6300	7875	100
DIN450	2.5	100	-	6300	7875	63
	1 & 2	63	100.8	6300	7875	100
DINOUU	2.5	100	-	6300	7875	63
	1 & 2	63	100.8	6300	7875	100
DINOUU	2.5	100	-	6300	7875	63
	1	100	160	10,000	12,500	100
DN700	2	50	80	10,000	12,500	200
	2.5	80	-	10,000	12,500	125
	1	100	160	10,000	12,500	100
DN750	2	50	80	10,000	12,500	200
	2.5	80	-	10,000	12,500	125

Table 17 (Virtual) full bore flow sensor – AC mains powered

Flow sensor size	Accuracy class	Q1 (m ³ /h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
	1	100	160	10,000	12,500	100
DN800	2	50	80	10,000	12,500	200
	2.5	80	-	10,000	12,500	125
	1	158.7	253.9	10,000	12,500	63
DN900	2	80	128	10,000	12,500	125
	2.5	125	-	10,000	12,500	80
	1	160	256	16,000	20,000	100
DN1000	2	80	128	16,000	20,000	200
	2.5	128	-	16,000	20,000	125
	1	160	256	16,000	20,000	100
DN1050	2	80	128	16,000	20,000	200
	2.5	128	-	16,000	20,000	125
	1	253.9	406.2	16,000	20,000	63
DN1100	2	128	204.8	16,000	20,000	125
	2.5	200	-	16,000	20,000	80
	1	253.9	406.2	16,000	20,000	63
DN1200	2	128	204.8	16,000	20,000	125
	2.5	200	-	16,000	20,000	80
	1	400	640	16,000	20,000	40
DN1350	2	200	320	16,000	20,000	80
	2.5	254	-	16,000	20,000	63
DN1400	1	400	640	16,000	20,000	40
	2	200	320	16,000	20,000	80
	2.5	254	-	16,000	20,000	63
	1	400	640	16,000	20,000	40
DN1500	2	200	320	16,000	20,000	80
	2.5	254	-	16,000	20,000	63

 Table 18 (Virtual) full bore flow sensor – AC mains powered

DN1600	1	400	640	16,000	20,000	40
	2	200	320	16,000	20,000	80
	2.5	400	-	16,000	20,000	40
	1	400	640	16,000	20,000	40
DN1650	2	200	320	16,000	20,000	80
	2.5	400	-	16,000	20,000	40
	1	320	512	16,000	20,000	50
DN1800	2	320	512	16,000	20,000	50
	2.5	400	-	16,000	20,000	40

 Table 19 (Virtual) full bore flow sensor – AC mains powered

Alternative flowrate values may be selected under the following conditions:

- Values of Q₃ shall not be greater that those specified in Tables 16, 17, 19 & 19;
- Values of Q₁ shall not be less than those specified in Tables 16, 17, 18 & 19;
- The ratio Q₄/Q₃ shall be 1.25;
- For accuracy class 1 and 2, the ratio of Q₂/Q₁ shall be 1.6;
- For accuracy class 1 and 2, the ratio of Q₃/Q₁ shall be not less than 40 and shall be selected as per clause 4.1.4 of NMI R 49-1; and
- For accuracy class 2.5, the ratio of Q₃/Q₁ shall be selected as per clause 3.1 of NMI M 10-1.

The Pattern and Variants incorporating the FEW4XY.V flow sensor have the following installation conditions:

- No flow straightener or flow conditioner is required.
- For accuracy class 1 and 2, the flow profile sensitivity class is U0/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 20.

Table 20 Minimum pipe lengths required by flow disturbance type

Flow Sensor	Disturbance Type (*)	Minimum number of upstream pipe lengths (DN)	Minimum number of downstream pipe lengths (DN)
	1	0	0
FEW4XY.V	2	0	0
	3	0	0

(*) For information on the different types of flow disturbances which are examined as part of pattern approval, refer to NMI M 10-2.

The Pattern and Variants incorporating the FEW4XY.F flow sensor have the following installation conditions:

- No flow straightener or flow conditioner is required.
- For accuracy class 1 and 2, the flow profile sensitivity class is U3/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 21.

Table 21 Minimum pipe lengths required by flow disturbance type

Flow Sensor	Disturbance Type (*)	Minimum number of upstream pipe lengths (DN)	Minimum number of downstream pipe lengths (DN)
	1	3	0
FEW4XY.F	2	3	0
	3	3	0

(*) For information on the different types of flow disturbances which are examined as part of pattern approval, refer to NMI M 10-2.

The Pattern and Variants are approved with the following pressure loss classes based upon flow sensor size and type:

(Virtual) full bore:

- For sizes DN40 and DN50: Δp10 (10 kPa)
- For sizes DN65 to DN200: Δp16 (16 kPa)
- For sizes DN250 to DN1800: Δp10 (10 kPa)

Flow sensor size	Meter length (mm)	Verification scale interval (m ³)
DN40 & DN50	200	0.0001
DN65	200	0.0001
DN80	200	
DN100 & DN125	250	0.001
DN150	300	
DN200	350	
DN250	450	0.01
DN300	500	
DN350	550	
DN400	600	
DN450	700	
DN500	770	
DN600	920	
DN700	700	
DN750	762	0.1
DN800	800	
DN900	900	
DN1000	1000	
DN1050	1067	
DN1100	1118	
DN1200	1200	
DN1350	1350	
DN1400	1400	
DN1500	1524	
DN1600	1600	1
DN1650	1650	
DN1800	1800	

Table 22 Flow sensor sizes, length and verification scale interval

7. Description of Variant 6

approved on 25/03/22

The Pattern and Variants are approved with the AquaMaster4 signal transmitter and the alternative AquaMaster3 FEV 2 electromagnetic full bore flow sensor (Figure 11 and 12) with the sensor sizes, flowrates and associated characteristics as specified in Tables 23 to 25.

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2* (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
DN40	2 & 2.5	0.25	0.40	40	50	160
DN50	2 & 2.5	0.39375	0.63	63	78.75	160
DN65	2 & 2.5	0.625	1.0	100	125	160
DN80	2 & 2.5	1.0	1.6	160	200	160
DN100	2 & 2.5	1.5625	2.5	250	312.5	160
DN125	2 & 2.5	1.5625	2.5	250	312.5	160
DN150	2 & 2.5	3.9375	6.3	630	787.5	160
DN200	2 & 2.5	6.25	10	1000	1250	160

Table 23 AquaMaster3 FEV 2 full bore flow sensor

* For class 2 meters only.

Alternative flowrate values may be selected under the following conditions:

- Values of Q₃ shall not be greater that those specified in Table 23;
- Values of Q1 shall not be less than those specified in Table 23;
- The ratio Q₄/Q₃ shall be 1.25;
- For accuracy class 2, the ratio of Q_2/Q_1 shall be 1.6;
- For accuracy class 2, the ratio of Q₃/Q₁ shall be not less than 40 and shall be selected as per clause 4.1.4 of NMI R 49-1; and
- For accuracy class 2.5, the ratio of Q₃/Q₁ shall be selected as per clause 3.1 of NMI M 10-1.

The Pattern and Variants incorporating the AquaMaster3 FEV 2 full bore flow sensor have the following power supply options:

- Renewable energy power (DC powered): 6 32 V
- Battery power: 2 x 3.6 V (operating range: 2.9 V 3.6 V)
- AC mains power supply: 85-240 VAC @ 50/60 Hz (with internal battery back-up)

The Pattern and Variants incorporating the AquaMaster3 FEV 2 full bore flow sensor have the following installation conditions:

- No flow straightener or flow conditioner is required.
- For accuracy class 2, the flow profile sensitivity class is U0/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 24.

Table 24 Minimum pipe lengths required by flow disturbance type

Flow Sensor	Disturbance Type (*)	Minimum number of upstream pipe lengths (DN)	Minimum number of downstream pipe lengths (DN)
	1	0	0
FEV 2	2	0	0
	3	0	0

(*) For information on the different types of flow disturbances which are examined as part of pattern approval, refer to NMI M 10-2.

The Pattern and Variants are approved with the following pressure loss classes based upon flow sensor size and type:

(Virtual) full bore:

- For sizes DN40 and DN50: Δp10 (10 kPa)
- For sizes DN65 to DN200: Δp16 (16 kPa)

Table 25 Flow sensor sizes, length and verification scale interval

Flow sensor size	Meter length (mm)	Verification scale interval (m³)
DN40 & DN50	200	0.001
DN65	200	0.001
DN80	200	0.001
DN100 & DN125	250	0.001
DN150	300	0.01
DN200	350	0.01

8. Description of Variant 7

approved on 25/03/22

The Pattern and Variants are approved with the alternative WaterMaster signal transmitter and WaterMaster FEV, WaterMaster FEW or WaterMaster FEF (virtual full bore, polypropylene lined or full bore, elastomer lined) electromagnetic flow sensor (Figure 13 and 14) with the sensor sizes, flowrates and associated characteristics specified in Tables 26 to 29.

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
	2	0.25	0.40	40	50	160
DIN40	2.5	0.40	-	40	50	100
	2	0.39375	0.63	63	100	160
DINSU	2.5	0.63	-	63	100	100
DNGE	2	0.625	1.0	100	125	160
DINOS	2.5	1.0	-	100	125	100
	2	1.0	1.6	160	200	160
DINOU	2.5	1.6	-	160	200	100
	2	1.5625	2.5	250	312.5	160
DINTOU	2.5	2.5	-	250	312.5	100
DN125	2	1.5625	2.5	250	312.5	160
DINI25	2.5	2.5	-	250	312.5	100
	2	3.9375	6.3	630	787.5	160
DN150	2.5	6.3	-	630	787.5	100
	2	6.25	10	1000	1250	160
DIN200	2.5	10	-	1000	1250	100
	2	10	16	1600	2000	160
	2.5	16	-	1600	2000	100
	2	15.625	25	2500	3125	160
DINSUU	2.5	25	-	2500	3125	100

Table 26 WaterMaster virtual/ full bore flow sensor

Flow sensor size	Accuracy class	Q1 (m³/h)	Q2 (m³/h)	Q3 (m³/h)	Q4 (m³/h)	Ratio Q3/Q1
	2	25	40	4000	5000	160
DN350	2.5	40	-	4000	5000	100
	2	25	40	4000	5000	160
DIN400	2.5	40	-	4000	5000	100
	2	40	64	4000	5000	100
DIN450	2.5	63.49	-	4000	5000	63
DNI500	2	40	64	4000	5000	100
0000	2.5	63.49	-	4000	5000	63

Table 27 WaterMaster virtual/ full bore flow sensor

Alternative flowrate values may be selected under the following conditions:

- Values of Q₃ shall not be greater that those specified in Table 26 and 27;
- Values of Q1 shall not be less than those specified in Table 26 and 27;
- The ratio Q₄/Q₃ shall be 1.25;
- For accuracy class 2, the ratio of Q₂/Q₁ shall be 1.6;
- For accuracy class 2, the ratio of Q₃/Q₁ shall be not less than 40 and shall be selected as per clause 4.1.4 of NMI R 49-1; and
- For accuracy class 2.5, the ratio of Q₃/Q₁ shall be selected as per clause 3.1 of NMI M 10-1.

The Pattern and Variants incorporating the WaterMaster FEV, WaterMaster FEW or WaterMaster FEF flow sensor have the following power supply options:

- DC powered: 24 V DC (+/-30% (18.46V to 31.2V DC) @ <0.4A)
- LOW VOLTAGE 24 V AC +10 % / -30% @ <7 VA
- Mains 85 to 265 V AC @ < 7 VA

The Pattern and Variants incorporating the WaterMaster FEV, WaterMaster FEW or WaterMaster FEF flow sensor have the following installation conditions:

- No flow straightener or flow conditioner is required.
- For accuracy class 2, the flow profile sensitivity class is U0/D0.
- For accuracy class 2.5, the installation conditions are specified in Table 28.

Flow Sensor	Disturbance Type (*)	Minimum number of upstream pipe lengths (DN)	Minimum number of downstream pipe lengths (DN)
FEV,	1	0	0
FEW,	2	0	0
FEF	3	0	0

Table 28 Minimum pipe lengths required by flow disturbance type

(*) For information on the different types of flow disturbances which are examined as part of pattern approval, refer to NMI M 10-2.

The Pattern and Variants are approved with the following pressure loss classes based upon flow sensor size and type:

(Virtual) full bore:

For sizes DN40 and DN50: Δp10 (10 kPa)
 For sizes DN65 to DN200: Δp16 (16 kPa)
 For sizes DN250 to DN500: Δp10 (10 kPa)

Table 29 Flow sensor sizes, length and verification scale interval

Flow sensor size	Meter length (mm)	Verification scale interval (m³)
DN40 & DN50	200	0.001
DN65	200	0.001
DN80	200	0.001
DN100 & DN125	250	0.001
DN150	300	
DN200	350	
DN250	450	
DN300	500	0.04
DN350	550	0.01
DN400	600	
DN450	700	
DN500	770	

TEST PROCEDURE No 14/3/46

This Approval and Certificate is issued only with respect to the design (the pattern and variants) of the water meter described herein. The calibration and measurement accuracy of individual water meters manufactured and marked in accordance with the approved pattern and variants should be verified in accordance with the test procedures specified below, or as required by relevant legislation.

Water meters tested for initial verification shall comply with the Certificate of Approval, Technical Schedule, and the maximum permissible errors for verification at the operating conditions in effect at the time of verification. Maximum permissible errors for verification of water meters are given in the *National Trade Measurement Regulations 2009* (Cth).

Water meters shall be verified in accordance with NITP 14 National Instrument Test Procedures for Utility Meters.

For accuracy class 2.5 meters:

- The maximum permissible errors for initial verification shall be ±2.5% from Q1 to Q4.
- The flow rates specified for initial verification in NMI M 10-2 shall replace the flow rates specified in NITP 14.
- NOTE: NMI reserves the right to vary this procedure. Any such variation shall be notified in writing by NMI.

ABB AquaMaster4 Model Water Meter – The Pattern

AquaMaster4 signal transmitter (indicating device) – The Pattern

AquaMaster4 – Sealing Device: read-only switch

AquaMaster4 – Sealing Device: physical seals

Page 38 of 48

AquaMaster4 – Example of Required Markings

AquaMaster4 – Compact and Remote Arrangements

AquaMaster4 – FEW4XX.R sensor (Variant 1 to 3)

AquaMaster4 – FEW4XX.V sensor (Variant 4 & 5)

AquaMaster4 – FEW4XX.F sensor (Variant 4 & 5)

AquaMaster FEV 2 electromagnetic full bore flow sensor – Variant 6

AquaMaster FEV 2 flow sensor (example markings) - Variant 6

WaterMaster compact and remote versions - Variant 7

WaterMaster (example markings) - Variant 7

~ End of Document ~