

National Measurement Institute

36 Bradfield Road, West Lindfield NSW 2070

Certificate of Approval NMI 14/3/75

Issued by the Chief Metrologist under Regulation 60 of the
National Measurement Regulations 1999

This is to certify that an approval for use for trade has been granted in respect of the instruments herein described.

UAB Axioma Metering Qalcosonic W1 DN20 Water Meter

submitted by Arthur D. Riley Co. Ltd.

137 Thorndon Quay Pipitea, Wellington, 6011

New Zealand

NOTE: This Certificate relates to the suitability of the pattern of the instrument for use for trade only in respect of its metrological characteristics. This Certificate does not constitute or imply any guarantee of compliance by the manufacturer or any other person with any requirements regarding safety.

This approval has been granted with reference to document NMI R 49-1 Water Meters Intended for the Metering of Cold Potable Water and Hot Water, *Part 1: Metrological and Technical Requirements*, dated May 2022.

This approval is subject to review at the decision of the Chief Metrologist in accordance with the conditions specified in the document NMI P 106.

DOCUMENT HISTORY

Rev	Reason/Details	Date
0	Pattern & Variant 1 approved – certificate issued	22/11/24

CONDITIONS OF APPROVAL

General

Instruments purporting to comply with this approval shall be marked with pattern approval number 'NMI 14/3/75' and only by persons authorised by the submittor.

It is the submittor's responsibility to ensure that all instruments marked with this approval number are constructed as described in the documentation lodged with the National Measurement Institute (NMI) and with the relevant Certificate of Approval and Technical Schedule. Failure to comply with this Condition may attract penalties under Section 19B of the National Measurement Act and may result in cancellation or withdrawal of the approval, in accordance with document NMI P 106.

Signed by a person authorised by the Chief Metrologist to exercise their powers under Regulation 60 of the *National Measurement Regulations 1999*.

Darryl Hines

Manager Policy and Regulatory Services

TECHNICAL SCHEDULE No 14/3/75

1. Description of Pattern

approved on 22/11/24

A DN20 sized UAB Axioma Metering Qalcosonic W1 model water meter (utilising the 'B Design' meter body) used to measure cold potable water and hot water supplies for trade.

1.1 Field of Operation

The field of operation of the measuring system using the DN20 sized water meter is determined by the following characteristics:

Minimum flow rate, Q_1 : 0.005 m³/h Transition flow rate, Q_2 : 0.008 m³/h

Maximum continuous flow rate, Q_3 : 4 m³/h Overload flow rate, Q_4 : 5 m³/h Flow rate ratio, Q_3/Q_1 : 800 Temperature class: T30 Maximum admissible temperature: 50 °C

Maximum admissible pressure: 1600 kPa

Pressure loss class: Δp 63

Accuracy class: 2

Flow profile sensitivity class: U0/D0 (see 1.1.3)

Electromagnetic class: E2

Environmental class: B & O

Orientation: All positions

Flow direction: Forward

Power supply: Non-replaceable battery (3.6 V)

1.2 Features/Functions

The pattern (Figure 1) consists of an ultrasonic flow sensor, an indicating flow computer (calculator/indicator) and has features/functions as listed below:

Connection type: Threaded

Display: A digital, electronic, liquid crystal display allowing for a

maximum indication range of 999,999.999 m^3 in 0.001 m^3 increments. The display may be placed into verification mode allowing a minimum resolution of 0.000001 m^3 .

Communications⁽¹⁾: Pulse output and optional RF or NB-IoT communication

module (using wMBus, LoRa WAN or CoAP protocols) for

data transmission

Materials: Meter body: Plastic

Note: The meter incorporates (inc. 'B Design' clear plastic

meter body (Figure 2))

Meter length: 105 mm

Non-return device: Optional dual check valve

1.3 Conditions

1.3.1 Installation Conditions

No flow straightener or flow conditioner is required.

The flow profile sensitivity class is U0/D0.

1.3.3 Water Quality

The meter is approved for use in the metering of potable water.

1.4 Software Version

The pattern is approved with software version 4.01.

1.5 Verification Provision

Provision is made for the application of a verification mark.

1.6 Sealing Provision

The upper and lower parts of the meter casing are fitted such that any unauthorised attempt to physically access the casing is impossible without damaging the meter. When the upper casing is opened, a safety button is activated and an error code appears on the display. For sealing the meter after installation, there are holes provided in the meter body. The meter is sealed against unauthorised changes to electrical parameters.

⁽¹⁾ The pattern and variants may be fitted and/or configured with the communication options listed in this certificate. However, the primary indication of volume displayed by the indicating device of the meter is the approved indication of volume.

1.7 Descriptive Markings and Notices

Instruments are marked with the following data, either grouped or distributed on the casing, the indicating device dial or an identification plate (Figure 1):

Manufacturer's name or mark ...

Serial number ...

Pattern approval number NMI 14/3/75

Numerical value of maximum continuous flow rate, Q₃...

Flow rate ratio, Q_3/Q_1 ...

Unit of measurement m³

Temperature class ⁽¹⁾ T30, T50, T70, T90 or

T30/70

Maximum admissible pressure (2) 1600 kPa

Pressure loss class ⁽³⁾ 63 kPa or Δp 63

Orientation ⁽⁴⁾ ...

Flow profile sensitive class (5) ...

Direction of flow \rightarrow or similar

Accuracy class ⁽⁶⁾

(1) Optional for temperature class T30 meters

(2) Optional for meters with MAP = 1400 kPa

 $^{(3)}$ Optional for pressure loss class Δp 63

(4) Optional for meters approved for all orientations

(5) Optional for U0/D0 class meters

(6) Optional for accuracy class 2 meters

For instruments that incorporate electronic devices, the following information can either be physically marked on the instrument or provided electronically via the indicating device or similar means:

Electromagnetic class E2

Environmental class B or O

For meters with an external power supply the voltage and frequency

For battery powered meters a replacement date or similar

indication of expected battery life

2. Description of Variant 1

approved on 22/11/24

The pattern is approved with a range of different sizes, flowrates and associated characteristics as specified in Tables 2-11 below. In Table 4, the pattern is shown in **bold** for completeness.

Table 2 – DN15 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.02	0.010	0.0064	0.005	0.004		
Transitional flowrate Q ₂ (m ³ /h)	0.032	0.016	0.01	0.008	0.0064		
Maximum continuous flowrate Q ₃ (m ³ /h)	1.6	1.6	1.6	1.6	1.6		
Overload flowrate Q ₄ (m ³ /h)	2	2	2	2	2		
Ratio Q ₃ /Q ₁	80	160	250	315	400		
Temperature class		T30, T50,	T70, T90	0, T90 or T30/70			
Meter Length (mm)		80, 105, 1	10, 115, 1	65 or 170			

Table 3 – DN15 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.031	0.016	0.01	0.0062	0.0031
Transitional flowrate Q ₂ (m ³ /h)	0.05	0.025	0.016	0.01	0.005
Maximum continuous flowrate Q ₃ (m ³ /h)	2.5	2.5	2.5	2.5	2.5
Overload flowrate Q ₄ (m ³ /h)	3.125	3.125	3.125	3.125	3.125
Ratio Q ₃ /Q ₁	80	160	250	400	800
Temperature class	T30,	T50, T70,	T90 or T30	0/70	T30
Meter Length (mm)		80, 105, 1	10, 115, 16	65 or 170	

Table 4 – DN20 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.016	0.01	0.005		
Transitional flowrate Q ₂ (m ³ /h)	0.026	0.016	0.008		
Maximum continuous flowrate Q ₃ (m ³ /h)	4	4	4		
Overload flowrate Q ₄ (m ³ /h)	5	5	5		
Ratio Q ₃ /Q ₁	250	400	800		
Temperature class	T30 , T50, T70, T90 or T30/70				
Meter length	105 , 110, 130, 165 or 190				

Table 5 – DN25 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.079	0.040	0.252	0.016	
Transitional flowrate Q ₂ (m ³ /h)	0.126	0.063	0.040	0.026	
Maximum continuous flowrate Q ₃ (m ³ /h)	6.3	6.3	6.3	6.3	
Overload flowrate Q ₄ (m ³ /h)	7.875	7.875	7.875	7.875	
Ratio Q ₃ /Q ₁	80	160	250	400	
Temperature class	T30, T50, T70, T90 or T30/70			70	
Meter Length (mm)	260				
Orientation		H and/or V			

Table 6 – DN25 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.125	0.0625	0.04	0.025	
Transitional flowrate Q ₂ (m ³ /h)	0.2	0.100	0.064	0.04	
Maximum continuous flowrate Q ₃ (m ³ /h)	10	10	10	10	
Overload flowrate Q ₄ (m ³ /h)	12.5	12.5	12.5	12.5	
Ratio Q ₃ /Q ₁	80	160	250	400	
Temperature class	T30, T50, T70, T90 or T30/70				
Meter Length (mm)	260				
Orientation		H and	/or V		

Table 7 – DN32 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.079	0.040	0.0252	0.016	
Transitional flowrate Q ₂ (m ³ /h)	0.126	0.063	0.04	0.026	
Maximum continuous flowrate Q ₃ (m ³ /h)	6.3	6.3	6.3	6.3	
Overload flowrate Q ₄ (m ³ /h)	7.875	7.875	7.875	7.875	
Ratio Q ₃ /Q ₁	80	160	250	400	
Temperature class	T30, T50, T70, T90 or T30/70				
Meter Length (mm)	260				
Orientation	H and/or V				

Table 8 – DN32 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.125	0.0625	0.025		
Transitional flowrate Q ₂ (m ³ /h)	0.2	0.100	0.04		
Maximum continuous flowrate Q ₃ (m ³ /h)	10	10	10		
Overload flowrate Q ₄ (m ³ /h)	12.5	12.5	12.5		
Ratio Q ₃ /Q ₁	80	160	400		
Temperature class	T30, T50, T70, T90 or T30/70				
Meter Length (mm)	260				
Orientation		H and/or V			

Table 9 – DN40 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.125	0.0625	0.04		
Transitional flowrate Q ₂ (m ³ /h)	0.2 0.100		0.064		
Maximum continuous flowrate Q ₃ (m ³ /h)	10	10	10		
Overload flowrate Q ₄ (m ³ /h)	12.5	12.5	12.5		
Ratio Q ₃ /Q ₁	80	160	250		
Temperature class	T30, T50, T70, T90 or T30/70				
Meter Length (mm)	300				
Orientation		H and/or V			

Table 10 - DN40 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.2	0.100	0.064	0.04	
Transitional flowrate Q ₂ (m ³ /h)	0.32	0.160	0.102	0.064	
Maximum continuous flowrate Q ₃ (m ³ /h)	16	16	16	16	
Overload flowrate Q ₄ (m ³ /h)	20	20	20	20	
Ratio Q ₃ /Q ₁	80	160	250	400	
Temperature class	T30, T50, T70, T90 or T30/70				
Meter Length (mm)	300				
Orientation	H and/or V				

Table 11 - DN40 meter sizes, flowrates and related information

Minimum flowrate Q ₁ (m ³ /h)	0.3125	0.156	0.1	0.0625	
Transitional flowrate Q ₂ (m ³ /h)	0.5	0.250	0.16	0.1	
Maximum continuous flowrate Q ₃ (m ³ /h)	25	25	25	25	
Overload flowrate Q ₄ (m ³ /h)	31.25	31.25	31.25	31.25	
Ratio Q ₃ /Q ₁	80	160	250	400	
Temperature class	T30, T50, T70, T90 or T30/70			70	
Meter Length (mm)	300				
Orientation		H and	/or V		

TEST PROCEDURE No 14/3/75

Water meters tested for verification shall comply with the Certificate of Approval, Technical Schedule, and the maximum permissible errors for verification at the operating conditions in effect at the time of verification. Maximum permissible errors for verification of water meters are given in the *National Trade Measurement Regulations 2009* (Cth).

Water meters shall be verified in accordance with the following national instrument test procedures:

- NITP 14.0 Utility meters general requirements
- NITP 14.3 Utility meters water meters

NOTE: NMI reserves the right to vary this procedure. Any such variation shall be notified in writing by NMI.

FIGURE 14/3/75 - 1

UAB Axioma Metering Qalcosonic W1 model DN20 Water Meter (the pattern) and example of required markings

FIGURE 14/3/75 - 2

'B Design' meter body

~ End of Document ~