

Australian Government Department of Industry,

Science and Resources

National Measurement Institute

CERTIFIED REFERENCE MATERIAL CERTIFICATE OF ANALYSIS

NMIA S058: 6β-Hydroxyandrostenedione

Report ID: S058.2024.01

Certified value

Chemical Formula: C₁₉H₂₆O₃

Molecular Weight: 302.4 g/mol

Batch No.	CAS No.	Purity (mass fraction)
24-S-04	63-00-3	98.1 ± 1.4%

The uncertainty has been calculated according to ISO Guide 35 and is stated at the 95% confidence limit (k = 2).

IUPAC name: (6β)-6-Hydroxyandrost-4-ene-3,17-dione.

Expiration of certification: The property values are valid till 16 May 2027, three years from the date of certification provided the **unopened** material is handled and stored in accordance with the recommendations below. The material as issued in the unopened container and stored as recommended below should be suitable for use beyond this date, subject to confirmation of batch stability from the issuing body. The expiry date/shelf life does not apply to sample bottles that have been opened. In such cases it is recommended that the end-user conduct their own in-house stability trials. The material will be re-tested on an annual basis to ensure that the property values are still valid. In the event a product fails the stability trial, notification will be sent to all impacted customers.

Description: White powder prepared by synthesis and certified for identity and purity by NMIA. Packaged in amber glass bottles with a septum and crimped aluminium cap or screw top cap.

Intended use: This certified reference material is suitable for use as a primary calibrator.

Instructions for use: Equilibrate the bottled material to room temperature before opening.

Recommended storage: When not in use this material should be stored at or below 4 °C in a closed container in a dry, dark area.

Metrological traceability: The certified purity value is traceable to the SI unit for mass (kg) through Australian national standards via balance calibration. In the mass balance all impurities are quantified as a mass fraction and subtracted from 100%.

Stability: In the absence of long-term stability data the measurement uncertainty at the 95% coverage interval has been expanded to accommodate any potential change in the property value. The stability component has been estimated from stability trials conducted on similar materials by NMI Australia over the last ten years.

Homogeneity assessment: The homogeneity of the material was assessed using purity assay by HPLC with UV detection on eight randomly selected 1-2 mg sub samples of the candidate material. The material was judged to be sufficiently homogeneous at this level of sampling as the variation in analysis results between samples was not significantly different at a 95% confidence level from that observed on repeat analysis of the same sample.

Safety: Treat as hazardous substance. Use appropriate work practices when handling to avoid skin or eye contact, ingestion or inhalation of dust. Refer to the provided safety data sheet.

S.R. Davies

Dr Stephen R. Davies, Team Leader, Chemical Reference Materials, NMI. 5 July 2024

NATA Accreditation No. 198 / Corporate Site No. 14214.

Legal notice: Neither NMIA as a representative of the Commonwealth of Australia, nor any person acting on NMIA's behalf, assumes any liability with respect to the use of, or for damages resulting from the use of, this reference material or the information contained in this document.

Characterisation Report:

The identity was confirmed by a range of spectroscopic techniques, NMR, and MS. The certified purity value was obtained by mass balance from a combination of traditional analytical techniques, including HPLC-UV detection, thermogravimetric analysis, Karl Fischer analysis, and ¹H NMR spectroscopy. The purity value is calculated as per Equation 1.

Purity = $(100 \% - I_{ORG}) \times (100 \% - I_{VOL} - I_{NVR})$

Equation 1

I_{ORG} = Organic impurities of related structure, I_{VOL} = volatile impurities, I_{NVR} = non-volatile residue.

Supporting evidence is provided by elemental microanalysis.

HPLC:	Instrument: Column: Column oven: Mobile Phase: Flow rate:	Thermo Scientific UltiMate 3000 Alltima C-18, 5 μm (4.6 mm x 150 mm) 40 °C Acetonitrile/MilliQ water (30:70 v/v) 1.0 mL/min
	Detector:	RS Diode Array Detector operating at 240 nm
	Relative mass fraction of the main component: Initial analysis: Mean = 99.7%, s = 0.004% (8 sub samples in duplicate, May 2024)	
Thermogravimetric analysis:		Volatile content 0.2% and non-volatile residue 0.8% mass fraction (May 2024)
Karl Fischer analysis:		Moisture content 0.5% mass fraction (May 2024)

Spectroscopic and other characterisation data

GC-MS:		Agilent 8890/5977B HP-5MS, 30 m x 0.25 mm l.D. x 0.25 μ m 160 °C (1 min), 10 °C/min to 220 °C (7 min), 20 °C/min to 300 °C (7 min) 250 °C 20/1 280 °C Helium, 1.0 mL/min 50-550 <i>m/z</i> e parent compound is reported with the major peaks in the mass spectrum. The latter are ge ratios and (in brackets) as a percentage relative to the base peak. 302 (M ⁺ , 100), 287 (50), 273 (22), 259 (6), 231 (8), 152 (40), 131 (15), 123 (22), 110 (23), 105 (24), 93 (28), 79 (37), 67 (29), 55 (25) <i>m/z</i>
ESI-MS:	Instrument: Operation: Ionisation mode: Interface voltage: Peak:	Shimadzu LC-TQ-MS 8045 Direct infusion at 10 μL/min Electrospray negative ion 3.0 kV 301 (M-H ⁺) <i>m/z</i>
¹ H NMR:	Instrument: Field strength: Solvent: Spectral data:	Bruker Avance III 500 500 MHz $CDCl_3$ (7.26 ppm) δ 0.94 (3H, s), 0.97 (1H, ddd, $J = 4.1$, 10.9, 12.2 Hz)), 1.24-1.34 (3H, m), 1.40 (3H, s), 1.51 (1H, ddd, $J = 4.1$, 13.1, 26.1 Hz), 1.62 (1H, m), 1.65-1.75 (2H, m), 1.87 (1H, ddd, $J = 2.8$, 3.9, 13.1 Hz), 1.95-2.20 (6H, m), 2.38 (1H, dm, $J = 17.1$ Hz), 2.45-2.54 (2H, m), 4.40 (1H, bs), 5.82 (1H, s) ppm Ethyl acetate 0.2% and dichloromethane 0.03% mass fraction was observed in the ¹ H NMR (May 2024).
¹³ C NMR:	Instrument: Field strength: Solvent: Spectral data:	Bruker Avance III 500 126 MHz CDCl ₃ (77.16 ppm) δ 13.9, 19.7, 20.4, 21.9, 29.6, 31.4, 34.3, 35.9, 37.2, 37.4, 38.2, 47.8, 51.0, 53.8, 72.9, 126.7, 167.9, 200.3, 220.6 ppm
Melting point:		195-196 °C
Microanalysis:	Found: Calculated: Calculated:	C = 74.7%; H = 8.4% (June 2024) C = 75.5%; H = 8.7% (Calculated for $C_{19}H_{26}O_3$) C = 75.0%; H = 8.7% (Calculated for $C_{19}H_{26}O_3$, 0.5%, w ater and 0.2% ethyl acetate)